
1. Introduction
Ionospheric scintillation is one of the main error sources that can reduce the quality of communication and 
navigation. Ionospheric scintillations mainly occur at equatorial and low latitudes, and polar regions (e.g., Abdu 
et al., 1985; Alfonsi et al., 2011; Basu et al., 1999; Spogli, Alfonsi, Cilliers, et al., 2013). Equatorial and low lati-
tude ionospheric scintillation occurs quite often between local sunset and midnight. A close relationship between 
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the occurrences of Equatorial plasma bubbles (EPBs) and severe ionospheric scintillations has been observed at 
low latitudes (e.g., Manju et al., 2011; Xiong et al., 2016). Previous all-sky airglow imager observations showed 
that EPBs usually extend in a wide range, but they contain a lot of small-scale structures (e.g., Otsuka et al., 2002; 
Takahashi et al., 2015).

It is generally accepted that, the EPBs are generated through the generalized Rayleigh-Taylor (R-T) instability un-
der favorable conditions. With their development initiated at the bottomside plasma density gradient region of a 
rapidly rising F layer after sunset, EPBs can rise to higher altitudes above the F layer peak to extend to a wide lati-
tude band along magnetic field lines (Kelley, 2009). The pre-reversal enhancement (PRE) of the eastward electric 
field during sunset hours, which elevates the F layer to higher altitudes, contributes to the R-T instability growth. 
A strong correlation between the climatological behaviors of EPBs and vertical plasma drifts driven by the PRE 
was observed at specific locations (Fejer et al., 1999) and globally (Li et al., 2007). The growth rate of the R-T 
instability, together with the initial density perturbation at the bottomside of the F layer control the occurrence of 
EPBs (Abdu et al., 2009; Tsunoda et al., 2010). Despite that the dependency of EPB on seasonal variations, solar 
and magnetic activities has been well investigated, the day-to-day variability of EPB and ionospheric scintillation 
occurrences still remains a challenge (Li et al., 2021, and the references therein).

Due to the importance of ionospheric scintillation in space weather application, a lot of research works have been 
carried out on the modeling of ionospheric scintillations (e.g., Grzesiak et al., 2018; Materassi et al., 2020; Pri-
yadarshi, 2015; Rezende et al., 2010; Spogli, Alfonsi, Romano, et al., 2013). de Lima et al. (2015) used the data 
obtained at São Luís, Brazil together with the neural network technique to build prediction model of ionospheric 
scintillation. Rezende et al. (2010) used data from two stations in Brazil, São Luís and São José dos Campos and 
the bagging-CART method to build ionospheric scintillation model. Grzesiak et al. (2018) used five days data 
collected by seven PolaRxS receivers over São Paulo state region in Brazil and continuity equation to forecast 
scintillation. On the other hand, Retterer (2010) and Nugent et al. (2021) used physics-based model to forecast 
low-latitude ionospheric scintillation. Retterer et al. (2005) built a theoretical model with the vertical plasma drift 
velocity observed by the Jicamarca incoherent radar in seven days to forecast the occurrence of spread F. Sousas-
antos et al. (2017) proposed a mathematical approach to the EPB forecasting based on five days of Digisonde data 
collected in São Luís, Brazil. However, due to the limited data employed in these studies, it's difficult to evaluate 
if the models are suitable for the prediction of scintillation occurrence on a daily basis.

Considering the complex relationship between the occurrences of EPBs/ionospheric scintillations and various 
factors including external driving forces and background ionosphere (Abdu, 2001), the machine learning ap-
proach, which can deeply find implicit relationships between various variables and well handle the nonlinear 
problems (Camporeale, 2019), could be a promising method for predicting ionospheric scintillations. In this re-
gard, the gradient boosting decision tree (GBDT) method has shown great prediction performance in many fields, 
such as in the field of intrusion detection (Tama & Rhee, 2019). Under the framework of GBDT, extreme gradient 
boosting (XGBoost; Chen & Guestrin, 2016), light gradient boosting machine (LightGBM; Ke et al., 2017) and 
unbiased boosting with categorical features (CatBoost; Prokhorenkova et al., 2017) have been proposed recently. 
To the best of our knowledge, the XGBoost, LightGBM and CatBoost algorithms have not been used to predict 
ionospheric scintillations. In this work, these boosting algorithms are used for the first time to predict amplitude 
scintillation (S4) level over low latitudes in the Brazilian longitude sector. Using the long-term observations from 
eight GPS receivers, together with the equatorial ionosonde measurements at São Luiz, we built a new prediction 
model of strong scintillation (with S4 > 0.5) occurrence. Comprehensive performance of the models using XG-
Boost, LightGBM and CatBoost algorithms is analyzed. A comparison of modeled results and observations on a 
daily basis during 2014 and 2020 is presented and discussed.

2. Input and Output Parameters
Based on the previous studies of factors affecting the generation of EPBs and scintillations, we employed the 
following items as input parameters to build the ionospheric scintillation prediction model, (a) local ionospheric 
total electron content (TEC), (b) equatorial F layer critical frequency (foF2), and (c) peak height (hmF2) over 
São Luiz, (d) solar activity characterized by F10.7, (e) geomagnetic activity characterized by KP, (f) solar wind 
interplanetary magnetic field Bz component (IMF Bz), and (g) seasonal variation (day number). The output 
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parameter is the status of ionospheric amplitude scintillation, that is, with strong scintillation (S) or without 
strong scintillation (NS).

The ionospheric scintillation data used in this study were collected from eight GPS receivers belonging to the 
Low-Latitude Ionospheric Sensor Network (LISN; Valladares & Chau,  2012). These receivers are located at 
equatorial and low latitudes and their geographic distributions are shown in Figure 1. The average period used to 
calculate S4 is 1 min, while the raw GNSS measurements are at 50 Hz. Only the scintillation data from GPS satel-
lites with elevation angles higher than 30° are used. This angle threshold minimizes the effects of geometric fac-
tors in the S4 index calculation due to tropospheric scattering and multipath propagation (Rezende et al., 2010). 
The S4 index was binned into grids of 1° (latitude) × 1° (longitude) with 5-min resolution (an example shown in 
Figure 1). The S4 indices obtained from all the satellites with ionospheric piercing point falling into the same grid 
are averaged in 5-min interval.

Through grouping the S4 and TEC by dip latitude, we got the temporal variation of amplitude scintillation and 
TEC at different dip latitudes. Figure 2a shows an example of S4 (gray dots) and its peak value (red dot) at dip 
lat. −12° during pre-midnight hours on 25 March 2015. Figure 2b shows the temporal variation of TEC (gray 
curve) and its moving average (thick gray curve) using a time window of 10 minutes. The Digisonde data from 
São Luís (2.6°S, 44.2°W, dip lat. −3°, marked as LSLZ in Figure 1), which is located close to the dip equator, 
was used to obtain the background ionospheric variation over the magnetic equator. The variability of the F layer 
critical frequency (foF2) and peak height (hmF2) as a function of local time (LT) is shown in Figures 2c and 2d. 
The values of the parameters TEC, foF2, and hmF2 obtained during the period of three hours before and one hour 
after sunset (highlighted by red thick curves) were employed to train the prediction model. Considering that the 
serious effect of scintillation on the transionospheric radio systems is signal loss, this effect occurs mainly when 
scintillation is strong. We used a threshold of 0.5, which is similar to previous studies (e.g., Jiao et al., 2017; Kil 
et al., 2002), to characterize the level of ionospheric scintillation into two classes: with strong scintillation (S) or 
without strong scintillation (NS).

For the input parameters F10.7, KP and IMF Bz, the daily value of F10.7, the mean, maximum and minimum 
values of KP and IMF Bz during the 24 hr period from the previous sunset to the present sunset, expressed as 
meanKP, maxKP, minKP, meanBz, maxBz, and minBz respectively were used. The seasonal factors are described 

Figure 1. Geographic distributions of the Digisonde (red asterisk) and GPS receivers (blue circles). The station codes and 
geographic coordinates are superimposed on the figure. The magnetic dip equator, and dip latitudes of 10°, −10°, −20°, and 
−30°, calculated using the IGRF-13 (Alken et al., 2021), are shown as solid and dotted black curves, respectively. The S4 
index from 9:55 to 10:00 UT on 21 November 2015, are superimposed on the figure, binned into grids of 1° (latitude) × 1° 
(longitude).
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as DNS = sin (2π × DoY/DiY) and DNC = cos (2π × DoY/DiY), where DoY is day of year (1 ≤ DoY ≤ 365 or 
366 for leap years) and DiY is total days in a year (365 or 366 for leap years) (Zhao et al., 2014).

3. Construction of Prediction Model
In general, the construction process of the prediction model is shown in Figure 3. First, the data set is built with 82 
values of the input parameters and 1 output. The 82 values include 24 TEC values, 24 foF2 values, 24 hmF2 val-
ues and 10 other values (dip latitude, F10.7, meanKP, maxKP, minKP, meanBz, maxBz, minBz, DNS, and DNC). 
All these parameters are described in the previous section. The output is the level of ionospheric amplitude scin-
tillation, that is, with or without scintillation above the specific threshold, that is, 0.5. Second, the data obtained 

are separated as training set and test set. Third, a five-fold cross validation 
(CV) approach is utilized to tune the model hyperparameters. Fourthly, using 
the optimal hyperparameters configuration, the optimal prediction model is 
fitted based on the training set. Finally, the test set is adopted to evaluate 
model performance according to the prediction results. The machine learn-
ing algorithms, hyperparameter optimization process and model evaluation 
methods are descripted as follows.

3.1. Machine Learning Algorithms

Previous studies showed that the XGBoost, LightGBM, and CatBoost algo-
rithms have their own advantages in different data sets (Bentéjac et al., 2020). 
To investigate which algorithm is more suitable for building the ionospheric 
scintillation prediction model, all the three algorithms are employed and their 
modeled results are compared.

The XGBoost algorithm, which was proposed by Chen and Guestrin (2016), 
has received widespread attentions because of its excellent performance in 
Kaggle's machine learning competitions. Similar to the gradient boosting, 
XGBoost builds an additive expansion of the objective function by minimiz-
ing a loss function. Considering that XGBoost is focused only on decision 

Figure 2. Examples of data used in the model building process. (a and b) S4 and total electron content as a function of local 
time (LT) over dip latitude −12°. (c-d) foF2 and hmF2 as a function of LT from the station São Luiz (LSLZ). The red thick 
curves in b-d show the values before and after sunset employed to train the prediction model.

Figure 3. Construction process of the prediction model.
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trees as base classifiers, a variation of the loss function is used to control the complexity of the trees (Bentéjac 
et al., 2020). XGBoost applies level-wise tree growth and uses pre-sorted algorithm and Histogram-based algo-
rithm for computing the best split.

The LightGBM is an extensive library that implements gradient boosting (Ke et al., 2017). LightGBM is unique 
in the aspect that it can construct trees using gradient-based one-sided sampling (GOSS). GOSS keeps all the 
instances with large gradients and performs random sampling on the instances with small gradients. GOSS allows 
LightGBM to quickly find the most influential cuts. Another feature of LightGBM is exclusive feature bundling 
(EFB). EFB technique bundles sparse features into a single feature. This can be done without losing any infor-
mation when those features do not have non-zero values simultaneously. Both GOSS and EFB provide further 
training speed gains. Unlike the XGBoost which applies level-wise tree growth, the LightGBM applies leaf-wise 
tree growth. Level-wise approach grows horizontal while leaf-wise grows vertical.

The CatBoost, which is also based on gradient boosting, was developed by Prokhorenkova et al. (2017). Two 
critical algorithmic advances introduced in CatBoost are the implementation of ordered boosting, a permuta-
tion-driven alternative to the classic algorithm, and an innovative algorithm for processing categorical features. 
Both techniques were created to fight a prediction shift caused by a special kind of target leakage present in all 
currently existing implementations of gradient boosting algorithms. CatBoost distinguishes itself from LightG-
BM and XGBoost by focusing on optimizing decision trees for categorical variables. It can deal with categorical 
features during training time instead of preprocessing time.

3.2. Hyperparameter Optimization

Most machine learning algorithms contain hyperparameters that need to be tuned. Generally, the hyperparameters 
search methods include grid search, Bayesian optimization, heuristic search and randomized search. In this study, 
grid search and five-fold CV approach were utilized for hyperparameters configuration. For five-fold CV, the 
original data set is randomly split into five equal size subsamples. Among them, a singular subsample is adopted 
as the validation set, and the other four subsamples are used as the training subset. This procedure is repeated 
five times, until each subsample is selected as a validation set once. Thereafter, the average accuracy of these five 
validation sets is used to determine the optimal hyperparameter values (Liang et al., 2020).

3.3. Model Evaluation

Robust quantitative measures are essential to compare the performance of different prediction methods. In ma-
chine learning there are many metrics for measuring classifier performance over a set of data (Camporeale, 2019). 
Since the receiver operating characteristic (ROC) curve was proposed as a comparison metric in machine learn-
ing, it has become the most commonly used way to visualize the performance of a binary classifier. A machine 
learning classification model can be used to predict the actual class of the data point directly or predict its prob-
ability of belonging to different classes. The latter provides more control over the predicted result. We can deter-
mine a threshold to interpret the result of the classifier. Through changing threshold values, a ROC curve can be 
created. The area under the curve (AUC), that is, the area between the ROC curve and the coordinate axis, is the 
best way to summarize classifier performance in a single number. The higher the AUC, the better the performance 
of the model for distinguishing between the positive and negative classes.

Figure 4 shows the confusion matrix containing information about the actual and predicted classes generated by a 
classification system. True negative (TN) and false negative (FN) represent the conditions where no scintillation 
above the threshold occurs and no scintillation is predicted, and scintillation occurs but no scintillation is predict-
ed, respectively. True positive (TP) and False Positive (FP) represent the conditions where scintillation occurs and 
scintillation is predicted, and no scintillation occurs but scintillation is predicted, respectively. These four values 
provide the basis from which all prediction metrics are derived. The ROC curve is created by plotting the true 
positive rate (TPR) against the false positive rate (FPR) at various threshold settings, where TPR is calculated as 
TP/(TP + FN) and FPR is calculated as FP/(FP + TN).

To further compare the modeled results from the different algorithms, the accuracy and F1, which are generally 
used in machine learning, were also computed. The accuracy is the proportion of successful predictions, which 
is calculated as (TP + TN)/(TP + FN + FP + TN). F1 can be interpreted as a weighted average of precision and 
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recall, F1 = 2 × (precision × recall)/(precision + recall), where the precision is calculated as TP/(TP + FP) and 
the recall is calculated as TP/(TP + FN).

4. Results and Discussion
In this study, the XGBoost (version 1.2.0), LightGBM (version 3.0.0), and CatBoost (version 0.24.2) libraries 
were used. These Python libraries can be installed via pip.

4.1. Relative Importance of Input Parameters

To study the influence of different parameters on scintillation occurrence, the input parameters were classified 
into five groups, that is, GLO, TEC, foF2, DAY, and hmF2. GLO is for GLObal parameters which includes F10.7, 
meanKP, maxKP, minKP, meanBz, maxBz, minBz, and Dip latitude. The groups TEC, foF2, and hmF2 include 
themselves and Dip latitude. The group DAY includes DNS, DNC, and Dip latitude.

We used randomly 70% of the data during 2012–2019 as training set to build the model and the remaining 30% 
data as test set. The XGBoost, LightGBM, and CatBoost with default hyper-parameters were trained and expressed 
as D-XGB, D-LGB, and D-Cat. The accuracy, AUC and F1 of the prediction models trained with different groups 
of parameters are shown in Figure 5. From the top panel of Figure 5, we can see that the models using the DAY 
group parameters have worst accuracy, which is 79.3% for D-XGB, 78.4% for D-LGB and 78.6% for D-Cat. This 
indicates that the DAY group parameters are less important to the scintillation prediction model. The accuracy 
rank of the AVE (average value of D-XGB, D-LGB, and D-Cat) is hmF2 > foF2 > GLO > TEC > DAY. The 
AUC and F1 also show similar pattern to the accuracy. The highest accuracy of the hmF2 group indicates that, 
out of a total of five groups, the variation of equatorial ionospheric F layer peak height during the evening hours 
plays a dominant role in the scintillation occurrence. Furthermore, if we use all these parameters, we can get the 
best outcomes, with accuracy up to 93.0% for AVE.

The prediction results of D-XGB using different groups of parameters along with the observation are shown in 
Figure 6. The groups of parameters employed to derive the results shown in Figures 6b–6g are DAY, TEC, GLO, 
foF2, hmF2, and all the parameters, respectively. In Figure 6a, the observational results clearly show the season-
al, latitudinal and solar activity dependences of scintillation. In Figure 6b, using the DAY group parameters, the 
model captures the seasonal and latitudinal variations. However, the solar activity dependence is not presented. 
From Figures 6c–6g, the models capture the seasonal, latitudinal and solar activity dependences, and the consist-
ency between the modeled and observational results is getting much better. Comparing Figure 6a with Figure 6g, 
it is clear that the model built with all the parameters shows a good agreement with the observation.

4.2. Comparison of Results Using Different Algorithms and Different S4 Thresholds

For the XGBoost, LightGBM, and CatBoost, a lot of hyperparameters need to be tuned to get a better model. 
In this study, some critical hyperparameters in XGBoost, LightGBM, and CatBoost algorithms were tuned. As 
shown in Table 1, the search values of different hyperparameters are specified. In particular, for different al-
gorithms, the search range of the same hyperparameter is kept consistent. We used randomly 70% of the data 

Figure 4. The confusion matrix showing correct (TP and TN) and incorrect (FN and FP) predictions made by the model 
compared to the observational data (i.e., with or without strong scintillations).
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containing all parameters as training set and the remaining 30% of the data as test set. Based on the grid search 
and five-fold cross validation, the optimal values for each set of hyperparameters were obtained (Table 1).

Using the tuned and default hyperparameters of the corresponding Python packages, the performance of the three 
algorithms was analyzed. Table 2 displays the evaluation metrics of different models. The best results are high-
lighted using a bold font. The models based on the XGBoost, LightGBM and CatBoost algorithms with tuned 
hyper-parameters are expressed as T-XGB, T-LGB, and T-Cat, respectively. It can be seen from Table 2 that the 
T-Cat achieves best performance, with the accuracy of 93.73%, AUC is 0.9860 and F1 is 0.8407. It is relevant to 
mention that the difference in performance of the six models is very small. In fact, the difference in model per-
formance between the tuned and default hyper-parametrizations is also not significant. The result indicates that 
all the six models can work well to predict scintillation.

Figure 7a shows the performance for T-Cat. The ROC curve was created by plotting the TPR against the FPR. In 
a ROC curve, a higher x-axis value indicates a higher number of FP than TN, while a higher y-axis value indicates 
a higher number of TP than FN. The optimal point, which is nearest to the top left corner (as shown in Figure 7a), 
represents the optimal compromise between TPR and FPR. It has the highest TPR together with the lowest FPR. 
The associated confusion matrices of the optimal point are shown in the embedded chart of Figure 7a. It is clear 
from the confusion matrices that the TP is 2,415, the FN is 119, the FP is 796 and the TN is 11,269. TPR = TP/
(TP + FN) = 2,415/(2,415 + 119) = 0.9530. FPR = FP/(FP + TN) = 796/(796 + 11,269) = 0.0660. TPR (FPR) 
is the y-value (x-value) of the optimal point. The accuracy is calculated as (TP + TN)/(TP + FN + FP + TN), 
93.73%.

Besides the threshold (S4 > 0.5) employed in the above analysis, we also used different thresholds of S4 (from 0.2 
to 0.7 with an interval of 0.1) for characterizing the occurrence or nonoccurrence of scintillations with different 
strength and rebuilt the T-Cat model. The prediction accuracy of T-Cat as a function of S4 threshold is shown in 
Figure 7b. We can see that for the threshold 0.2, the accuracy is ∼85%, which is obviously less than the accuracy 
(>90%) for the thresholds 0.3–0.7. This suggests that weak scintillations are more difficult to be forecasted than 
the moderate and strong scintillations. Since the main topic of this study is to predict strong scintillations which 
have more significant impact on satellite communication and navigation quality, only the threshold 0.5 is em-
ployed in the following analysis.

Figure 5. The accuracy, area under the curve and F1 of prediction models using different groups of parameters. The AVE 
shown in the right part of each panel represents the average value of the three algorithms (D-XGB, D-LGB, and D-Cat).
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4.3. Scintillation Prediction on a Daily Basis Using Equatorial Ionosonde Observations

To evaluate the prediction capability of the T-Cat model for strong scintillations on a daily basis, we took the 
equatorial F layer peak height (hmF2) and critical frequency (foF2) over São Luiz as the input parameters and 
used the data during 2012–2013 and 2015–2019 to retrain the model. The data in 2014 (solar maximum) and 
2020 (solar minimum) were employed as test data set.

Figures 8a and 8b shows the observations in 2014 and the prediction results of strong scintillation. In general, 
the prediction results show a good agreement with the observations in the seasonal and latitudinal dependences. 
Figure 8c shows the FP (blue) and FN (red) events as functions of month/day and latitude. The ROC curve for the 
T-Cat in 2014 is shown in Figure 8d. It can be noted from the confusion matrix that out of a total of 1,514 strong 
scintillation events, 1,247 (267) events were successfully (not) predicted. For the events without strong scintilla-
tions, 1,740 events were identified, while 275 events were misclassified. The corresponding accuracy is 84.64%.

Figure 9 shows the results in 2020. In general, the prediction results in the seasonal and latitudinal dependences 
also exhibit good agreement with the observations. In Figure 9d, the confusion matrix shows that 142 (18) out of 
160 strong scintillation events were successfully (or not) predicted. For the events without strong scintillations, 
3,618 events were identified, while 668 events were misclassified. The corresponding accuracy is 84.57%. The 

Figure 6. Comparison of (a) observations and (b–g) prediction results of D-XGB using different groups of parameters. The 
blank area in the plots represent that there is no data for part of the input parameters.
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model achieves a good prediction (with accuracy of ∼85%) in both 2014 (solar maximum) and 2020 (solar 
minimum).

Regarding the discrepancies between the predicted results and observations, there could be several possibilities. 
Generally, to successfully predict the occurrences of ionospheric scintillations over a given longitude sector, 
Li et al. (2021) suggested that it is required to determine if EPBs will be generated locally or be generated at 
neighboring longitudes and travel into the given sector through zonally drifting, and if EPBs will cause scintil-
lations. For the present FN condition where strong scintillations occurred but were not predicted by the model, 
one possibility is that some of the EPBs producing scintillations were not generated at the longitudes near São 
Luiz, where the ionosonde measurements were used as input parameters. Previous studies have shown that there 
could be extremely large differences in the generation rates of EPBs at closely located longitudes (Li et al., 2016). 
Whereas the input parameter hmF2 from the São Luiz ionosonde measurements during sunset hours could rep-
resent the variation of PRE over a large longitude region, some local processes responsible for the initial seeding 
of EPBs, for example, the F region bottomside wave structure in the neighboring longitudes, are difficult to be 
caught by the ionosonde measurements. On the other hand, previous studies showed that if there is a strong seed-
ing source, EPBs could be generated even without PRE (Tsunoda et al., 2010). In a more recent study, Takahashi 
et al., (2020) observed a possible source of EPB seeding by 2,500 km south away from the equator. Under such 
conditions, the model may not predict well the occurrence of the EPBs and associated scintillation, only with the 
input parameters from the ionosonde measurements.

For the FP condition where strong scintillations above the threshold were not observed but were predicted by 
the model, one possibility is that the EPBs did not produce strong scintillations in there. It is evident from Fig-
ures 9a and 9c that for the FP conditions, scintillations were observed but with relatively weak intensity. In fact, 

Algorithm Hyperparameter Default value Grid search values Optimal value

XGBoost learning_rate 0.3 0.025, 0.05, 0.1, 0.2, 0.3 0.1

gamma 0 0, 0.1, 0.2, 0.3, 0.4, 1.0, 1.5, 2.0 0

max_depth 6 3, 6, 9 9

colsample_bytree 1 0.5, 0.7, 0.9, 1.0 0.9

subsample 1 0.15, 0.5, 0.75, 1.0 1.0

LightGBM learning_rate 0.1 0.025, 0.05, 0.1, 0.2, 0.3 0.1

min_split_gain 0 0, 0.1, 0.2, 0.3, 0.4, 1.0, 1.5, 2.0 0.3

num_leaves 31 7, 31, 127 127

colsample_bytree 1 0.5, 0.7, 0.9, 1.0 0.9

subsample 1 0.15, 0.5, 0.75, 1.0 0.15

CatBoost learning_rate Auto 0.025, 0.05, 0.1, 0.2, 0.3 0.05

max_depth 6 3, 6, 9 9

leaf_estimation_iterations Auto 1, 10 10

rsm 1 0.5, 0.7, 0.9, 1.0 0.7

l2_leaf_reg 3 1, 3, 6, 9 9

Table 1 
The Default Values, Possible Values for the Grid Search and Optimal Values of Hyperparameters for the XGBoost, 
LightGBM, and CatBoost Algorithms

Model metric D-XGB T-XGB D-LGB T-LGB D-Cat T-Cat

Accuracy (%) 92.84 92.51 92.94 93.40 93.18 93.73

AUC 0.9841 0.9845 0.9833 0.9853 0.9852 0.9860

F1 0.8222 0.8156 0.8226 0.8329 0.8290 0.8407

Note. The bold font in Table 2 highlights are the best results for different metrics among the models.

Table 2 
The Accuracy, AUC, and F1 of Different Models
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the ionospheric scintillation is produced by plasma irregularities of scales sizes of hundreds of meters, generated 
through secondary instability processes within the EPB depletion structure (Haerendel, 1974). The scintillation 
intensity is dependent on the strength of plasma density fluctuation (∆N) when the satellite-receiver radio links 
traverse through the irregularity structure embedded in EPBs. Even if the EPB depletion structures extend to low 
latitude, they may not produce serious scintillations under relatively low background ionospheric density condi-
tion. For the present scintillation prediction on a daily basis, except the foF2 from the equatorial ionosonde, no 
plasma density measurements at other latitudes were included as input parameters. By including the background 
ionospheric density measurements at different latitudes, and the location and the intensity of the equatorial ion-
ization anomaly in the daily forecast, the prediction accuracy of strong scintillations could be improved.

5. Conclusions
A prediction model of low latitude ionospheric strong scintillation has been built based on the gradient boosting 
algorithms using long-term ground-based GPS receiver and Digisonde data over the Brazilian longitude sector. 
It is for the first time that the algorithms XGBoost, LightGBM, and CatBoost are utilized to build prediction 
models for regional occurrence of strong scintillations. Generally, the XGBoost, LightGBM, and CatBoost with 
default and tuned hyperparameters can forecast the scintillation with a good performance. Based on the long-term 
observational data during 2012–2019, the relative importance of different input parameters causing strong scin-
tillations was investigated. The results revealed that the model trained with the equatorial hmF2 may be extended 
to other parameters in predicting the low latitude strong scintillations. By using the equatorial ionosonde hmF2 
and foF2 measurements as input parameters of the trained model, which was trained with the data from 2012 to 
2013 and 2015 to 2019, the performance for predicting the scintillation occurrence on a daily basis was examined 
in 2014 (solar maximum) and 2020 (solar minimum). The prediction accuracy is ∼85%. It was suggested that the 
trained model with the input of equatorial hmF2 and foF2 before sunset could well predict the occurrence/non-
occurrence of low latitude scintillations on a daily basis. Because this study mainly focuses on predicting strong 

Figure 7. (a) The performance of T-Cat for the S4 threshold 0.5. The circle superimposed on the receiver operating 
characteristic curve is the optimal point and its corresponding confusion matrices are shown in the embedded chart. (b) The 
prediction accuracy of T-Cat as a function of S4 threshold.
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scintillations characterized by the threshold 0.5, the prediction of weaker scintillations with the current model 
and input parameters may deteriorate.

Whereas some efforts have been made in the prediction of ionospheric strong scintillations, there are still some 
discrepancies between the forecasted results and observations. The possibilities responsible for the discrepancies, 
including the drifting EPB which may produce scintillation but the factors affecting its generation in the neigh-
boring longitudes are not included to train the model, and the background plasma density which may affect the 
strength of plasma density fluctuation and thus the scintillation intensity, have been discussed. In the future, we 
hope to train and test the model for predicting the strength of ionospheric scintillation in the East and Southeast 
Asia sector, where a lot of facilities including big radars, regional dense GNSS TEC and scintillation receivers, 
and ionosonde oblique and vertical sounding networks have been deployed at equatorial and low latitudes in a 
wide longitude region.

Figure 8. A comparison of (a) observations and (b) prediction results on a daily basis using T-Cat, (c) the false positive and 
false negative events, (d) the performance of T-Cat in 2014. The circle superimposed on the receiver operating characteristic 
curve is the optimal point and its corresponding confusion matrices are shown in the embedded chart. The blank area in the 
top two panels represent data gap.
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Data Availability Statement
The GPS scintillation and TEC data were obtained from the LISN (http://lisn.igp.gob.pe/jdata/database/, regis-
tration required). The Digisonde data was obtained from the Instituto Nacional de Pesquisas Espaciais, São José 
dos Campos, Brazil (http://www2.inpe.br/climaespacial/SpaceWeatherDataShare/). The KP index was obtained 
from the GFZ German Research Centre for Geosciences (http://www.gfz-potsdam.de/en/kp-index/). The F10.7 
data was obtained from the Canada.ca (https://www.spaceweather.gc.ca/solarflux/sx-3-en.php). The IMF data 
was obtained from the OMNI (https://omniweb.gsfc.nasa.gov/ow_min.html). All the data used in this study can 
be accessed at the WDC for Geophysics, Beijing (https://doi.org/10.12197/2021GA020).
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