
1.  Introduction
The behavior of the Earth’s ionosphere is the result of the interplay of several processes that include produc-
tion from photo-ionization, loss by chemical reactions, the coupling of the plasma component with the ther-
mosphere and the magnetosphere and transport processes due to electric fields and neutral wind dynamics 
(Zettergren & Semeter, 2012). These complex interconnected factors contribute to the ionosphere’s high 
variability due to the influence of factors from solar, geomagnetic, and atmospheric sources (Davies, 1990; 
Kelly, 2012). These variabilities are often characterized by the spatio-temporal fluctuations of ionospher-
ic total electron content (TEC), scintillation indices, electron density and various ionospheric chemical 
constituents.

The presence of large TEC in the ionosphere and perturbations and irregularities in the electron density 
impose adverse effect on communication and navigation signals (Basu et al., 2001; Kaplan & Hegarty, 2005; 
Kintner et al., 2001). The adverse effects of the ionosphere on GNSS and other communication systems are 
more pronounced during a geomagnetic storm as TEC exhibits strong perturbations (Ngwira et al., 2019). 
Hence, the total electron content can be seen as a good indicator of ionospheric activity in particular and 
adverse space weather events in general.

Abstract  In this research, we present data-driven forecasting of ionospheric total electron content 
(TEC) using the Long-Short Term Memory (LSTM) deep recurrent neural network method. The random 
forest machine learning method was used to perform a regression analysis and estimate the variable 
importance of the input parameters. The input data are obtained from satellite and ground based 
measurements characterizing the solar-terrestrial environment. We estimate the relative importance of 
34 different parameters, including the solar flux, solar wind density, and speed the three components 
of interplanetary magnetic field, Lyman-alpha, the Kp, Dst, and Polar Cap (PC) indices. The TEC 
measurements are taken with 15-s cadence from an equatorial GPS station located at Bogota, Columbia 
(4.7110° N, 74.0721° W). The 2008–2017 data set, including the top five parameters estimated using 
the random forest, is used for training the machine learning models, and the 2018 data set is used for 
independent testing of the LSTM forecasting. The LSTM method as applied to forecast the TEC up to 
5 h ahead, with 30-min cadence. The results indicate that very good forecasts with low root mean square 
(RMS) error (high correlation) can be made in the near future and the RMS errors increase as we forecast 
further into the future. The data sources are satellite and ground based measurements characterizing the 
solar-terrestrial environment.

Plain Language Summary  Space weather affects satellite communications, precise military 
operations and can interfere with power grids on the ground. Physics-based space weather forecasting 
is extremely challenging due to the complicated nature of the physical drivers which can come from the 
Sun, the magnetosphere, the ionosphere, and the lower atmosphere. In this research, we used data-
driven machine learning methods to forecast the ionospheric total electron content which provides the 
amount of ionization in the upper atmosphere and hence helps as a proxy to forecast other space weather 
phenomenon.
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Consequently, estimating the present and future TEC in the ionosphere would contribute to understanding 
and mitigating these adverse space weather effects. Previous and current physics-based estimation of the 
TEC and other space weather parameters are usually complicated by the fact that the relative roles of the 
physical factors are different across different geographic regions and altitude ranges. Physical models are 
also not purely physical since some of the processes are parameterized based on simplifying assumptions 
and may not work globally and the empirical data may not be available for all geographic regions. More-
over, physics-based models for forecasting need observational data to be used as initial and/or boundary 
conditions at the model grids. Furthermore, the ionosphere is shaped by inputs from the Sun, the solar 
wind, the magnetosphere, the lower atmosphere and transport processes in the ionosphere itself. Often, we 
do not have a precise functional relationship between these parameters and TEC measurements or other 
space weather parameters. Most studies depend heavily on data assimilation techniques in modeling the 
ionospheric TEC (Bilitza, 2018; Hajj et al., 2004; Mandrake et al., 2005; Scherliess et al., 2009).

Machine learning methods are promising solutions for this kind of problems in which we do not either 
know the functional relationship between the input variables and the output parameter we want to esti-
mate or the computational cost of the physical model is high. These methods are famous in learning from 
the data to extract the necessary information. They are particularly suitable for problems involving a suite 
of variables especially when linear techniques such as least squares regression is inadequate to describe a 
nonlinear system. Machine learning and deep learning methods are now quite popular in many industries 
and have achieved some impressive results (Camporeale, 2019).

Some machine learning methods have been applied successfully to ionospheric, magnetospheric and other 
space weather studies. Forecasting of geomagnetic indices such as the Kp and Dst (Tan et al., 2018; Wu & 
Lundstedt, 1996), coronal mass ejection propagation time (Bobra & Ilonidis, 2016), solar wind speed (Yang 
et al., 2018), relativistic electrons at geosynchronous orbits (Ling et al., 2010) have been achieved by apply-
ing machine learning methods. Other recent works by Bortnik et al. (2018), Z. Chen, et al. (2019), McGran-
aghan et al. (2018), and Gross and Cohen (2020) applied different machine learning methods for different 
space weather studies over the ionosphere, magnetosphere and the radiation belt. A non-linear regression 
analysis was used by Villalobos and Valladares (2020) to model TEC values over South and Central America. 
These authors found a non-linear Kp, solar flux, and day of year dependency for each pixel (0.5° × 0.5°) and 
each 30-min TEC map obtained between 2008 and 2010. However, their numerical model presented differ-
ences as large as 30% of the TEC measurements. A comprehensive review of the application of machine 
learning for space weather nowcasting and forecasting is given by (Camporeale, 2019).

The problem of forecasting TEC is largely a time domain problem, in that the future evolution is depend-
ent not only on the present state, but on the past history of various solar-terrestrial parameters. To address 
this need, we have chosen to investigate the Long-Short Term Memory (LSTM) deep recurrent neural net-
work. LSTM method is a powerful and well-known branch of artificial neural networks famously known 
for solving time sequence data (Goodfellow et al., 2016). LSTMs have been recently applied for forecasting 
different space weather parameters. For example, Tan et al. (2018) applied the LSTM method to forecast the 
Geomagnetic Kp index using historical solar wind, interplanetary magnetic field and the Kp index itself as 
input. Wei et al. (2018) were able to achieve one day lead time forecasting of high-energy electron integral 
flux at geostationary orbit using the LSTM deep neural network machine learning method and the Kp, Ap, 
Dst, solar wind speed, magnetopause subsolar distance and the 2-MeV electron integral flux itself as input. 
LSTMs are particularly popular in speech recognition, solar power forecasting, traffic prediction and others 
(Gensler et al., 2016; Graves et al., 2013; Zhao et al., 2017). A brief introduction about the LSTM deep recur-
rent neural network is presented §2.2.

Other advanced machine learning methods have been applied to forecast ionospheric TEC. For example, 
Huang and Yuan  (2014) employed radial basis function neural network improved by Gaussian mixture 
model to forecast 30 min TEC. Huang and Yuan (2014) used day of year, local time, previous TEC, its tem-
poral and differential variation as input variables and found results with root-mean-square error less than 5 
TECU (1 TECU = 1016el/m2). Habarulema et al. (2009) used solar geomagnetic indices, Day of year and hour 
number features in a simple neural network to model TEC. R. Chen, Wang, et al. (2019) employed deep neu-
ral networks to forecast global TEC maps. However, the application of machine learning and deep learning 
methods to study the ionosphere can be considered at its infancy state, especially at high and mid-latitudes, 
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given the ubiquitously available space and ground 
based data sets and the recent popularity of machine 
learning methods (McGranaghan et al., 2018).

In this research we use advanced machine learning 
methods and various space and ground based parame-
ters and machine learning to forecast the ionospheric 
total electron content at a temporal resolution of half 
an hour and a lead time of up to 5 h.

The paper is organized in the following manner. Sec-
tion  2 gives a succinct description of the machine 
learning methodology and the solar-terrestrial param-
eters that are associated with the variability of the TEC 
over the Bogota, Columbia equatorial station. Also in 
Section 2 the data processing and procedures of the ex-
periment are described. Section 3 describes the results 
of the machine learning algorithm and the implication 
of these results. Sections 4 provides the discussion and 
conclusion part.

2.  Data Analysis and Methodology
2.1.  Data Analysis

We use TEC values collected by one of the Low-lati-
tude Ionospheric Sensor Network (LISN) stations that 
has been operated since 2001 in Bogota, Columbia (lo-
cation: 4.7110° N, 74.0721° W). This station is of prime 
importance due to its location under the northern crest 
of the equatorial anomaly (see Figure  1). Here, the 
plasma density is a strong function of the equatorial 
zonal electric field, the meridional component of the 
thermospheric wind, and several processes acting in 
other layers (e.g., stratosphere, mesosphere, and ther-
mosphere) that influence or modify these quantities. 

The TEC at this GPS station is calculated with 15-s cadence, collected for this study over one full cycle pe-
riod from 2008 to 2018. We resample the TEC to a cadence of 30 min for efficient computational purposes.

The input features comprising the solar flux (F10.7), solar wind density and speed, the three components 
of interplanetary magnetic field, Lyman-alpha, the Kp, Dst and Polar Cap (PC) indices, the interplanetary 
magnetic field, a total of 34 parameters are extracted from NASA’s OMNI (Operating Missions as a Node on 
the Internet) Space Physics Data Facility (SPDF). SPDF-OMNI contains multi-spacecraft measurements, ac-
count for the propagation estimated time from spacecraft to the magnetopause (McGranaghan et al., 2018). 
Table 1 presents the training features used in our machine learning methods. First, the random forest ma-
chine learning method is used to perform a preliminary regression analysis and variable importance estima-
tion. Then the top 5 variables are selected and used into the LSTM deep recurrent neural network machine 
learning method to forecast TEC every 30 min for 5 h lead time.

Simple interpolation technique is applied to some of the parameters to match all the features to a 1 min 
time resolution before resampling the total data set to a 30 min cadence. All the data sets including the 
vertical TEC and the OMNI input features are cleaned for missing values. The presence of outliers in some 
features have been identified and removed as they can affect the machine learning output. For example, the 
solar flux has outlier measurements way greater than 140 in solar flux unit, other features such as the PC 
-index, Sigma Lat, Sigma Lon and other have outlier measurements which are removed before training our 
machine learning methods. Each feature and the vTEC has been scaled from 0 to 1 using the sklearn MIn-
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Figure 1.  Showing the location of the Bogota, Columbia GPS station (blue circle) at the 
northern crest of the equatorial anomaly (4.7110° N, 74.0721° W). Red circles show other Low-
latitude Ionospheric Sensor Network GPS stations as of 2016.
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MaxScaler (Pedregosa et al., 2011) before training the machine learning methods to minimize the impact 
of large dynamical range.

2.2.  Machine Learning

Machine learning is a mathematical approach in which computer systems “learn by example” and extract 
useful information from a large set of historical data, often very large amounts of data spanning as large num-
ber of parameters as possible. Recently, machine learning has been applied to various fields in geosciences 
and remote sensing, agriculture, banking, etc (Camps-Valls, 2009; Lary et al., 2016; Zhang et al., 2016), and 
prediction of atmospheric gases such as CO2 (Gardner & Dorling, 1998) and ozone (Prybutok et al., 2000; 
Yi & Prybutok, 1996). Beyond geosciences it is used very widely for applications such as for spam filtering 
(Guzella & Caminhas, 2009), credit scores, fraud detection, image processing, etc. The availability of large 
space and ground based data sets makes machine learning suitable for ionospheric study. The need for ad-
equate computational facility can be satisfied with the advent of the now commonplace resources such as 
high performance computing (McGranaghan et al., 2018).

Machine learning methods can learn the behavior of the system and retrieve the necessary information if 
they are provided with data spanning as many parameters as possible in the training. It can “learn” the be-
havior of the system even in the case the relation between the information and the parameters is non-linear 
and multivariate (Lary et al., 2016).

Some commonly used machine learning approaches include Neural Networks, Support Vector Machines, 
decision trees, and Random Forests (an ensemble of decision trees). The other powerful method for time 
series forecasting is recurrent neural networks. Although there are different types of machine learning 
algorithms currently used, there is no single method that always will perform better than the rest for all 
problems. The best machine learning method to apply depends on the problem we solve and the available 
training data (Kotsiantis, 2007). The following subsections briefly describe the various machine learning 
approaches that we have employed in this research.
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Feature name Unit Feature name Unit

F10.7 solar flux  sfu (10−22W m−2 Hz−1) Sigma alpha/Prot.  ratio

Lyman alpha  10−15 erg−1cm−2A−1 Sigma_T  K

Polar Cap (PC) index mV/m SYM_H, ASY_D nT

Dst nT Sigma IMF vr nT

Log. Angle of B   GSE SigmaNp  N/cm3

R Sun spot Number Vx  m/s

AU index  nT flow speed  m/s

SYM_D  nT AP index  nT

IMF B magnitude   nT sigma IMF Magnitude  nT

Lat. Angle of B   GSE ASY_H   nT

AL index   nT Kp   0–9

Sigma V   m/s Sigma Lon  Degree

Sigma Bz   nT (GSE) SW proton density   N/cm3

Sigma By   nT (GSE) Flow pressure   Pa

Sigma Bx   nT (GSE) Vy   m/s

SW plasma temperature   K Vz   m/s

Sigma IMF vector ave  nT AE index  nT

Most of the features are obtained from NASA’s Space Physics Data Facility (SPDF) OMNI (Operating Missions as a 
Node on the Internet) data.

Table 1 
Solar and Solar-Terrestrial Features Used to Train the Random Forest and LSTM Recurrent Neural Network Methods.
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2.2.1.  Random Forest

One of the popular machine learning methods known for its robust performance on regression and classi-
fication is the random forest method introduced by (Breiman, 2001). The random forest machine learning 
algorithm works based on random sampling of data to form ensemble of decision trees for both regression 
and classification problems. Each tree will provide its “vote” to make a decision in classification and a 
model functional estimate for regression. After a number of regression trees are grown using a randomly 
selected subset of training samples and variables, prediction will be made by aggregating (majority vote for 
classification or averaging for regression) the predictions of the ensemble. The basic idea here is ensemble 
learners from randomly resampled data set produce better model performance than developing a single re-
gression tree from the total data set. In that way random forests decreases the variance of the model without 
increasing bias (Breiman, 2001; Friedman et al., 2001; Verikas et al., 2011).

The main advantage of random forests for the purpose of this study is that it provides a useful facility to rank 
the relative importance of the input variables (Genuer et al., 2010), allowing us to isolate the variables that 
are helpful for forecasting. The random forest estimates the variable importance of a feature by estimating 
the Gini impurity for classification and variance for regression when that feature is used as a splitting node 
for the regression tree (Han et al., 2016; Strobl et al., 2007). In this case, we are computing how much each 
feature contributes to decreasing the weighted impurity or variance. While a machine learning model such 
as LSTM can in principle learn which variables are important, the more refined is the data set, the less train-
ing data will be required to achieve good results. As such, narrowing down the variables to the important 
ones can shorten the training process for the LSTM.

2.2.2.  Recurrent Neural Networks

Recurrent neural networks are a special type of neural networks known for time series forecasting and 
sequential analysis (Yu et al., 2019). Recurrent neural networks work on the principle of the cyclical con-
nectivity and information flow of neurons in the human brain (Tan et al., 2018). They allow information 
to persist because they have loops across the hidden layers that connect the previous information to the 
present task as shown in Figure 2a. These cyclic connections present in recurrent neural networks make 
them more powerful than ordinary feed forward neural networks. Recurrent neural networks perform the 
same task for each component of the sequence with the output dependent on the previous computation of 
the sequence in the sense that the recurrent neural network has “memory” that encodes information for 
the previous computation.

The recently popular and robust deep recurrent neural network applied for solving scientific and com-
mercial problems is the Long-Short Term Memory (LSTM) network. LSTMs, developed by Hochreiter and 
Schmidhuber (1997) and then refined by Graves (2012), are an improvement to recurrent neural networks 
in that LSTMs are known for removing the vanishing gradient problem (Hochreiter, 1998) that inhibits re-
current neural networks from learning. The vanishing gradient arises when the gradient of the loss function 
with respect to the weights is highly reduced during backpropagation time in a long sequence recurrent 
neural network (Bengio et al., 1994; Mikolov et al., 2014). LSTMs avoid the vanishing gradient problem 
of recurrent neural networks by remembering information for a long period of time through their special 
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Figure 2.  Showing network structure of recurrent neural networks and a single Long-Short Term Memory cell.
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four interacting structures in each repeating unit as shown in Figure 2b. 
These four structures are the cell state (the top horizontal line in Fig-
ure 2b) which is the memory part of the LSTM unit and the other three 
structures are input, output and forget gates that control the flow of in-
formation through. Explicit explanation about LSTM structures can be 
found in Yu et al. (2019).

3.  Results
We first employed the random forest machine learning method to esti-
mate the functional relationship between the various space weather pa-
rameters shown in Table 1 to the ionospheric vTEC measured at Bogota 
Columbia using the 2008 to 2013 data. The random forest machine learn-
ing method is also used to estimate and rank the contribution of each 
parameter (Figure 6) for the vTEC regression. The top five parameters 
namely: the F10.7 solar flux, Lyman alpha, ASY_D, PC index, and Dst as 
well the vTEC itself are used to train the LSTM model.

The LSTM recurrent neural network is then employed to forecast the 
vTEC every 30 min for up to 5 h lead time. The LSTM model is initial-
ized with random weights and the efficient ADAM (Adaptive Moment 
Estimation) optimizer (Kingma & Ba,  2014) is used. The loss function 
used is the root mean squared error. The LSTM model is run on top of 
tensorflow (Abadi et al., 2016) using the keras (Gulli & Pal, 2017) neural 
network library. The number of training epochs are set to 200; initial hy-
perparameter selection showed that after about the 200th epoch the root 
mean square error doesn’t decrease significantly.

Figures 3 and 4 show scatter plots of the result of the random forest meth-
od applied to estimate the vertical TEC. The color scale in both figures 
represent the bin counts in logarithmic scale and shows the distribution 
of the actual and forecasted vTEC. To depict the distribution of the vTEC 
for each bin, the 25th and 75th quartile plots are shown by, respectively, 
the red and black lines. The data is split into 20% test set and 80% training 
set. The random forest model is developed using the training data and 
forecasts are made for the training set (Figure 3) and test set (Figure 4). 
Figure 3 shows scatter plots of forecasts made using the training data and 
the target vTEC used to supervise the model. Similarly, Figure 4 presents 
scatter plots of the actual vTEC withheld for testing and forecasts made 
using the test set. It is no surprise that in the Figure 3 the scatter plots are 
less spread away from the diagonal (RMSE = 0.373) than the test data set 
as the they are result of forecasts using the same training data set that is 
used to develop the model. The scatter plots in Figure 4 are more spread 
away from the diagonal (RMSE = 0.968). The bin color scale shows that 
most of the TEC fall below about 25 TEC units.

Error distribution of estimates of the random forest forecast for the inde-
pendent test data is depicted in Figure 5. In this case the error is the dif-
ference between the forecasted vTEC based on the independent test data 
and the actual vTEC withheld before training the random forest method. 
We clearly observe that the error is distributed with mean centered near 
zero and standard deviation close to 1 TEC unit showing robust perfor-
mance of the random forest method.

The random forest can be applied to estimate the contribution of each 
feature for the model. This method contributes significantly by compli-
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Figure 3.  Scatter diagram showing the actual vTEC and estimated vTEC 
using the random forest machine learning method applied to the training 
data set.

Figure 4.  Scatter diagram showing the actual vTEC and estimated vTEC 
using the random forest machine learning method applied to the test data 
set.

Figure 5.  The error distribution of the vertical total electron content 
estimated using the random forest regression for the test data set.
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menting model interpretation and explanation issues that are common in other methods such as the black-
box nature of the neural network (Tzeng & Ma, 2005) method. The random forest calculates the feature im-
portance based on the calculation of the Gini impurity (Han et al., 2016) described in §2.2.1. Other methods 
such as estimation of the mean squared error in the out-of-bag sample for all number of trees before and 
after the values of that parameter are permuted (Genuer et al., 2010) can also be applied to estimate the 
variable importance in the random forest regression and classification problems.

Figure 6 presents the variable importance estimated and ordered in their respective rank for our TEC fore-
casting. The names and units of the features are listed in Table 1. Clearly we observe that solar flux (F10.7) 
and Lyman alpha are the top parameters. Other features such as the ASY_D, Polar Cap index and Dst, Log 
Angle of B, R Sun spot, and AU_index are among the top parameters. The features such as the solar wind 
plasma speed, temperature and AE_index are the lowest important features. We can see that a whole chunk 
of features do not contribute significantly to the model. However, the solar parameters such as, the solar 
flux (F10.7), Lyman alpha, R Sun spot and Dst are among the top predictors consistent with the physics of 
ionospheric formation.
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Figure 6.  Showing the variable importance estimated using the random forest method and their ranking order.
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The result of the application of the LSTM method to forecast vTEC 
30  min ahead into the future is shown in Figure  7. In Figure  7, the 
black and red curves respectively show the actual and forecasted vTEC 
30 min into the future using the LSTM method. Similarly the forecasted 
and actual GPS TEC 5  h into the future is shown in Figure 8. Visual 
inspection of the Figures 7 and 8, clearly illustrates the 30 min ahead 
forecast a more accurate result than the forecast 5 h ahead of time. The 
5 h ahead forecast in Figure 8 fails to get the various peaks and fluctu-
ations in the vTEC.

Figures  7 and  8 show that we can effectively forecast the vTEC in the 
immediate future. And when we try to forecast further into the future, 
the model produces a less accurate forecast of the TEC. Further more, 
Figure 8 illustrates that the LSTM has relatively a hard time in forecasting 
the day time VTEC than the night time TEC. The LSTM method, especial-
ly, fails to capture fluctuations in the TEC during the day time compared 
to the nigh time. The night time vTEC doesn’t fluctuate as much as the 
day time vTEC and therefore it is easy to forecast using the LSTM. In 
some situations the LSTM has a tendency to over estimate the day time 
peak vTEC while effectively capturing the night time trough.

The forecasting of GPS vTEC at the Bogota, Columbia station has been 
done in 30-min segments for up to 5 h into the future. Root mean square 
(RMS) error and correlation coefficient between the LSTM forecasted and 
actual vTEC for every half hour forecast has been calculated and shown, 
respectively, in Figures 9 and 10. For baseline performance comparison 
the persistence forecast is also included. For both LSTM and persistence 
forecast, the correlation coefficient decreases as we forecast further into 
the future (Figure 9). Similarly, the RMS error increases as we progress 
from a half hour forecast to the 5 h lead time forecast. However, even for 
a five-hour lead time forecast, the correlation coefficient remains fairly 
high, 0.88 and the persistence forecast falls significantly as we forecast 
further into the future.

4.  Summary and Discussion
Forecasting the ionospheric space weather is important to mitigate its 
effect on global navigation and communication systems and power grids. 
However, developing a comprehensive and accurate ionospheric fore-
casting model is a challenge as the physical drivers are complex across 
the different regions and seasons (Mallika et al., 2018). Ionospheric TEC 
is a key parameter in describing the state of the ionosphere and accurate 
forecasting of it is crucial for ionospheric space weather characterization 
and mitigation.

The complex nature of the global ionosphere is shaped by solar and in-
terplanetary activities as wells inputs from stratosphere, troposphere and 
mesosphere. Various long and short term physics and data assimilation 
based forecasts have been developed in the past (Amerian et al., 2013; 
Jakowski et  al.,  2011). However, physics based models hardly capture 
the complex structure of the ionosphere as the mathematical relation-
ship between the solar, geomagnetic and lower atmospheric parameters 
across the various ionospheric geographic regions and different altitudes 
is not comprehensively and precisely known. Empirical models such as 
the IRI (Bilitza, 2001) and Nequick models (Nava et al., 2008) which have 
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Figure 7.  30-min ahead forecast of the vTEC using the Long-Short Term 
Memory method.

Figure 8.  5 h ahead forecast of the vTEC using the Long-Short Term 
Memory method.

Figure 9.  Correlation coefficient between real and forecasted total electron 
content, as a function of forecast horizon.
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been commonly applied for ionospheric TEC forecasting are biased 
and produced inaccurate predictions. For example comparison of di-
rect TEC derived from GPS and IRI model have shown large tempo-
ral discrepancies especially over the low latitude ionosphere (Karia 
et al., 2015).

Therefore, data driven forecasting based on advanced machine 
learning methods is an ideal candidate for effectively forecasting 
not only just the TEC but also other space weather events. Al-
though the application of machine learning for forecasting is not 
necessarily new, it is at its golden time due to the availability of 
large data sets and the increase in computational power based on 
specialized processors (Camporeale, 2019). The near Earth space 
environment is particularly suitable to apply advanced machine 
learning methods due to the ubiquitously availability of data from 
different satellites, balloons, ground based magnetometers and 
GPS receivers, radars and imagers for about half a century.

In this paper, we used the random forest and LSTM machine learning methods to forecast vTEC using 
an equatorial GPS station at Bogota, Columbia. The random forest method was used to estimate the 
variable importance and rank them in order of their influence to the model. The LSTM deep recurrent 
neural network is then used to forecast the vTEC 5 h ahead every half hour. Only the top 5 parameters 
in the random ranking as well as the past history of the TEC are used as input for the LSTM forecasting. 
Using a selected number of the top predictors highly improves the computational necessity and training 
time. The method is able to forecast the TEC even in the drastic behavior of the equatorial ionosphere. 
And undoubtedly, it will perform much better at the mid-latitude ionosphere where drastic changes in 
the ionosphere are uncommon. Subsequent papers will present the application of the method at the po-
lar region ionosphere. The method can also be applied to forecast other space weather parameters at all 
regions and altitudes.

A few important points should be indicated regarding the variables used in the forecasting and the machine 
learning methods. It has been widely known that the equatorial ionosphere is driven by solar radiation 
coming from the sun and the parameters which are known to influence the TEC are solar and magnet-
ic indices, geographic position of the receiver and line of sight of the satellite (Habarulema et al., 2009; 
Hofmann-Wellenhof et al., 2012). As we clearly see in the variable importance ranking using the random 
forest machine learning (see Figure 6), the solar parameters: F10.7 solar flux, layman alpha, R sun spot and 
the magnetic indices: ASY_D, Dst and PC indices stood in the top 6. This is a testimony that the machine 
learning results agree well with the physics of ionospheric formation.

A few other recent researchers used the LSTM methods to forecast different space weather parameters 
and its application is on the rise. For example, Yang et al. (2018) used the LSTM method to forecast 
the occurrence of geomagnetic storms (kp v 5) using the solar wind and planetary magnetic field as 
well the kp index itself to the LSTM method. Yang et al. (2018) found that the LSTM method improved 
the the kp forecasting, compared to other methods, despite a lower mean absolute and mean squared 
errors. Our application of the LSTM method to forecast vTEC produced results with higher correlation 
coefficient (≈0.98) at short lead time than at long lead time. A recent work by Z. Chen et al.  (2019) 
used a hybrid LSTM and CNN (Convolutional Neural Network) for forecast extreme weather events 
bringing superior results than traditional numerical and statistical methods. Application of the hybrid 
LSTM-CNN method will help for ionospheric 2D and 3D forecasting and identifying electron density 
perturbations.

Data Availability Statement
All the TEC values corresponding to Bogota in Colombia can be found at the LISN server at the following 
address: lisn.igp.gob.pe. Other solar wind, magnetosphere, and ionosphere parameters are from the NASA 
Space Physics Data Facility (SPDF) web page (omniweb.gsfc.nasa.gov).
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Figure 10.  Root mean square error between real and forecasted total electron 
content, as a function of forecast horizon.
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