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Abstract We have used total electron content (TEC) values from low, middle, and high latitudes recorded
over the American continent and density and ion temperature measured in situ by the DMSP-F15 and F17
satellites during the geomagnetic storms of 3–4 August 2010 and 5–6 August 2011 to study the formation
and dynamics of plasma density enhancements that developed during these two storms. Common to both
storms are the timing of themain phase that extends between 20 and 24UT and their seasonality with both
stormsoccurringnear theendof theNorthernHemispheresummersolstice.Duringboth storms,TECdatashow
incipient equatorial anomalies lacking a poleward expansion beyond 20° magnetic latitude. Two large-scale
TEC enhancements were observed at middle latitudes showing a complicated pattern of structuring and
merging. The first TEC enhancement corresponds to a storm-enhanced density (SED) seen between 21 and
01UT on the following day. The second TEC enhancement was observed over Central America, located
equatorward of the SED and apparently moving northward. However, careful analysis of the TEC values
indicates that this second TEC enhancement is not transported from lower latitudes through a superfountain
effect. Instead, the enhanced plasma has a local origin and is driven by a southward directed meridional
wind that moves plasma up the tilted magnetic field lines. DMSP flights passing over the second TEC
enhancement show a reduction of the ion temperature, confirming an adiabatic expansion of the plasma
as it moves up the field lines. It is concluded that the midlatitude TEC enhancements do not arise from a
low-latitude ionospheric fountain effect.

1. Introduction

This series of two papers present the results of an investigation of the physical mechanisms responsible for
the initiation and evolution of two large-scale total electron content (TEC) enhanced structures seen in the
American sector during the magnetic storms of 3–4 August 2010 and 5–6 August 2011. In this paper, we pre-
sent detailed ground- and space-based observations of the large-scale TEC enhancements that developed
during both magnetic storms. The modeling and simulations have been described in a companion paper
(J. V. Eccles et al., The magnetic storms of August 3–4, 2010 and August 5–6, 2011: 2. Ionosphere and electro-
dynamics modeling, in preparation, 2017). The first TEC enhancement was initially seen over the eastern part
of North America, corresponding to a growing storm-enhanced density (SED). This enhancement was cen-
tered at 40°N, 83°W at 22:20UT on 3 August 2010. The second TEC enhancement was initially located over
Central America and comprised a large-scale region that expanded parallel to and equatorward of the SED.
The second TEC enhancement has a center at 18°N, 97°W.

SEDs are persistent ionospheric features observed in the premidnight subauroral ionosphere during themain
phase of magnetic storms [Foster, 1993; Foster and Rich, 1998]. Global maps of TEC have revealed that SEDs
are wedge-type structures containing enhanced plasma that move poleward toward the cusp. The
Millstone Hill incoherent scatter radar has been instrumental in characterizing SEDs as spatially continuous,
large-scale features spanning local times between noon and midnight and extending between the trough
and the midlatitude ionosphere [Foster et al., 2005].

Several different theories have been presented to explain the origin of the high-density plasma that is
found within the SEDs. Vlasov et al. [2003] were the first to use a theoretical model to suggest that the
prompt penetration of a strong electric field to middle and low latitudes was able to produce the high
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TEC enhancements at the crests of the equatorial anomaly and then displace the crests farther poleward to
reach higher latitudes. Later, Kelley et al. [2004] suggested that the crest density itself could be driven pole-
ward by a penetrating zonal electric field to form SEDs. A comprehensive set of measurements was pre-
sented by Tsurutani et al. [2004] in which satellite and ground GPS data were used to demonstrate that
the entire low and middle latitudes (up to� 50°) ionospheres were uplifted during the storm of 5–6
November 2001. These authors concluded that the pronounced uplift was the result of a dayside latitud-
inally extended superfountain effect able to transport equatorial plasma upward and reach midlatitudes by
diffusion along the field lines [Mannucci et al., 2005]. It was also pointed out that the rapid uplift of the
ionosphere could also set off plasma instabilities to form bubbles and depletions [Basu et al., 2007].
Balan et al. [2009] used the Sheffield University Plasmasphere-Ionosphere Model to demonstrate that an
equatorward wind can produce stronger crests of the equatorial anomaly by reducing the downward
diffusion of plasma along the field lines associated with the superfountain effect.

These initial hypotheses were followed by more comprehensive measurements and modeling work. Heelis
et al. [2009] used the Time-Dependent Ionospheric Model [Schunk et al., 1986; Schunk, 1988; Sojka, 1989] to
demonstrate that an expanded auroral oval, as commonly occurs during magnetic storms [Heelis and
Mohapatra, 2009], was sufficient to create dayside SED-type TEC enhancements amplified by a factor of 2
or more. Hence, there was not a requirement for the plasma to be first enhanced in the equatorial ionization
anomaly and then transported tomidlatitudes. In addition, Rishbeth et al. [2010] questioned the ability of a den-
sity enhancement to withstand the long transport times required for the “superfountain effect” plasma to reach
high latitudes. They also pointed out that this time, several hours, is much longer than the lifetime of the
plasma even at high altitudes. Tsurutani et al. [2013] responded that the effect of the variability of the prompt
penetration electric field and disturbance neutral wind should be considered in a very complete modeling of
the low-, middle-, and high-latitude ionosphere. It is worthmentioning that Vlasov et al. [2003] suggested that a
daytime southward neutral wind could produce a TEC enhancement by moving plasma toward higher alti-
tudes of reduced chemical loss. This effect would be the largest near�30 magnetic latitude [Balan et al., 2010].

It is presently known that several processes in the coupled magnetosphere-ionosphere-thermosphere sys-
tem can induce intense changes in the regional and global distribution of plasma densities. These changes
are more pronounced during disturbed conditions in which F region densities can increase, or decrease,
by a factor of 5–10. Penetration electric fields can lead to increases in the ionospheric density by raising
the layer height; they modify the fountain effect at the equator and transport the crests of the equatorial
anomaly poleward [Mannucci et al., 2005]. Thermospheric heating at the poles produces a southward wind
pattern, driving the ionospheric plasma up the field lines. Heating can also generate changes in the neutral
composition. An increase in the molecular components in the F region can create an increase in the recom-
bination rate and so reduce plasma density [Crowley et al., 2006]. It is also pointed out that plasma instabilities
can also create pronounced redistributions of the midlatitude plasma by the generation of medium-scale tra-
veling ionospheric disturbances [Perkins, 1973]. It is the purpose of this paper to provide a thorough descrip-
tion of the ionospheric observations during twomagnetic storms that developed during the ascending phase
of solar cycle 24. During the last few years the number of GPS receivers operating in South and Central
America and the Caribbean region has increased considerably allowing us to have the needed spatial resolu-
tion to understand the dynamics of several large-scale ionospheric processes. One of these networks belongs
to the low-latitude ionospheric sensor network (LISN) [Valladares and Chau, 2012]. This paper presents
ground- and space-based observations obtained during the storm of 3–4 August 2010 (section 2) and the
storm of 5–6 August 2011 (section 3). The paper concludes with a discussion (section 4) and a list of the
conclusions (section 5).

2. Observations During the Magnetic Storm of 3–4 August 2010
2.1. Solar Wind Parameters

On 3 August 2010 a moderate storm (G2 level) impinged on the magnetosphere at 1740UT and lasted for
nearly 12 h. The storm solar inputs can be seen in Figure 1, where we show the SYM-H parameter, the solar
wind velocity, the proton density, and the Bz and By components of the interplanetary magnetic field (IMF)
measured by the ACE satellite. Figure 1 (first panel) displays a positive increase in SYM-H to 30 nT that points
to a compression of the magnetosphere under northward conditions. At the time of the shock, the solar wind
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velocity suddenly rises to 600 km/s; however, the proton density increases slowly from 4 to 10 protons/cm3

between 1800 and 0100UT on the following day. SYM-H starts decreasing at 1920UT due to the southward
turning of the IMF Bz component that occurs at ~1900UT. This is followed by a series of Bz sign fluctuations
that last until 1930UT when a sustained period of strong southward IMF (�13 nT) starts and last for 5 h. The
IMF By component is negative between the time of the shock and the start of themain phase. The stormmain
phase starts at 1930UT and lasts until 0100UT on 4 August 2010 when Bz turns northward for a 40min period.
During the storm main phase, By presents continuous 15min fluctuations that last until 2400UT.

2.2. TEC Values During the Magnetic Storm

We processed RINEX files from 562 GPS stations that were operating in North, Central, and South America and
the Caribbean region on 3–4 August 2010 to study TEC variability produced by this storm in the high-, middle-,
and low-latitude ionospheres. TheGPS receivers belong to several networks that are presently operating in the
American sector. Someof thesenetworks areglobal such asContinuouslyOperatingReference Stations, others
are regional such as LISN, University NAVSTAR Consortium, and Sistema de Referencia Geocéntrico para las

Figure 1. SYM-H index and interplanetary data corresponding to the storm event of 3–4 August 2010. The interplanetary
data were measured by the ACE satellite. From top to bottom, the four frames show the 1min SYM-H index (nT), the solar
wind velocity (km/s), the solar wind proton density (cm�3), and the IMF Bz and By components (nT) displayed in black
and red.
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Américas (SIRGAS). A total of 260 stations from North America and 300+ stations from South and Central
America and the Caribbean region were utilized to produce the TEC maps in Figure 2.

The analysis of the RINEX files to derive equivalent vertical TEC values has been described in a previous
publication [Valladares and Chau, 2012]. The algorithm that is used to interpolate and produce the regional
TEC images has also been described before. Succinctly, this method consists of dividing the continent into
thousands of overlapping areas that extend 8° in longitude and 8° in latitude. A 10-term, 2-D, third-order
polynomial that varies as a function of latitude and longitude is least squares fitted to all TEC values in this
square to find only four TEC values at the center of each overlapping square in a small area that is only 1°
on each side. A new 8° × 8° area is considered by successively advancing 1° in latitude and then 1° in
longitude. Commonly, a total of 15,000 fitted values are obtained per image.

The four images in Figure 2 illustrate the high spatial variability of the TEC values during the magnetic storm
of 3–4 August 2010. Movie S1 in the supporting information consisting of 2min frames and spanning
between 2000 and 0300UT is used to display the high temporal variability of the TEC images. The movie is
part of the supporting information that accompanies this publication. Figure 2 shows still TEC images for
(a) 2130UT, (b) 2220UT, (c) 2310UT, and (d) 0100UT. Satellite trajectories corresponding to two consecutive
passes of the DMSP-F15 satellite across the American sector are indicated using a red line in Figures 2a and
2c. During the early part of the storm, the low-latitude ionosphere displays a weak equatorial anomaly con-
taining a latitudinal extension not larger than 5° (Figure 2a). Only the southern crest is observed at this time.
The anomaly starts expanding poleward near 2200UT, reaches 15° magnetic latitude and becomes relatively
more intense at 0100UT. The northern crest does not appear until 2310 UT (Figure 2c) when it seems to be
part of a region containing much higher TEC values located north of the anomaly (Figures 2a–2d). These high
TEC values, named here the second TEC enhancement, could be mistaken for the crests of an anomaly that
has expanded poleward tomore than 20° in magnetic latitude driven by a superfountain effect. Instead, these
high TEC values, as we show later, have a local origin.

The SED starts forming at 2020UT (1520 LT at 75°W),when it is seenas a faint enhancement locatednorth of 50°
geographic latitude. At 2050UT, the SED appears as a narrow continuous line that enters the North American
continent at 42° geographic latitude and leaves throughNorthern Canada at 145°Wwhen it is directed into the
cusp region forming the tongueof ionization (TOI). The SEDas awhole startsmoving southward at 2200UTand
continues tomove southward formore than 10° in latitude between 2100 and 0100UT. The eastern side of the
SEDwidensover theeastern coast ofNorthAmerica andbecomes aligned in thenorthwest-southeast direction
at 0020UT (1920 LT at 75°W) on 4 August 2010. A close inspection of the TEC images show the SED developing
undulations, as seen in its polewardboundary between 110 and 100°W, in Figures 2b and 2c. The TECmovie for
3–4 August 2010 indicates that a large segment of the SED intensifies slowly but concurrently between 2100
and 0100UT. It also shows the northern end of the SED entering the polar cap through northern Alaska and
becoming a narrow TOI at 2300UT (~13 LT). The SED persists until 0100UT, when it diminishes and fades.
Near 0010UT on 4 August 2010 a long and wide trough forms and extends parallel and poleward of the SED.
The trough stays until 0400UT, well within the recovery phase of the storm.

The second TEC enhancement becomes visible in the TEC maps before 2000UT (14 LT at 90°W) and seems to
be part of a TEC enhanced feature that develops almost every day over the Central America-Mexico region
during the June solstice season. However, on the day of the storm, the second TEC enhancement occupies
a much larger area and lasts for many more hours. Figure 2a shows the second TEC enhancement located
above Central America extending as far south as the northern boundary of Peru and to the north bounded
by the central part of Mexico. A careful inspection of the movie for 3–4 August 2010 indicates that the second
TEC enhancement weakens and becomes narrower at 2140UT, when a resurgence of this enhancement
occurs and last until 0030UT of 4 August 2010, when there is a general decrease of all TEC structures. It is
important to note that most of these observations correspond to local daytime hours when solar radiation
is able to replenish bottomside plasma that may have moved up to higher altitudes. As night progresses,
the second TEC enhancement grows northward and eastward reaching the middle part of the USA and mer-
ging with the southern boundary of the SED where it develops a system of fingers that seems to connect
both regions of enhanced TEC values. Both regions of enhanced TEC seem to be fully merged at 2300UT
(17 LT at 90°W), but they decay and separate at 2356UT. After the start of day 4 August 2010, the northern
part of the SED and the second enhancement decay very rapidly, and only their southern parts over the
Central American and the Caribbean region remain, starting to fade by 0100UT.
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Figure 2. Total electron content measured by the LISN and several networks of GPS receivers that operate in North, Central and South America, and the Caribbean
region. The four frames correspond to the following times: (a) 21:30–21:40 UT, (b) 22:20–22:30 UT, (c) 23:10–23:20 UT, and (d) 01:00–01:10 UT. Figures 2a and 2c show
the trajectory of two consecutive passes of DMSP-F15.
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2.3. DMSP In Situ Observations During the Storm

Figure 3 shows in situ number density (red trace) and ion temperature (blue dots) measured by the DMSP-F15
satellite orbiting at 840 km altitude between (a) 2104 and 2137UT and (b) 2246 and 2319UT. DMSP-F15 flies
in circular, Sun-synchronous, polar orbit near the 2100–0900 local time meridian. Both density and ion
temperature were measured by the Special Sensor for Ions, Electrons and Scintillations (SSIES) instrument.
The purpose of these plots is to ascertain whether or not a link exists between the TEC enhancements
observed by the GPS receivers, corresponding density enhancements at the satellite altitude, and low ion
temperatures due to adiabatic cooling that may be produced by plasma moving up the field lines.
Figure 3a shows a small density enhancement that is located equatorward of the trough at 2133UT. This
small Ne enhancement coincides with the poleward edge of the SED observed in Figure 2a. The second
DMSP-F15 pass (Figure 3b) intersected both the SED and the second TEC enhancement. Two density
enhancements are seen in Figure 3b corresponding to both TEC maxima observed in Figure 2c. However,
a close comparison of the times and locations of both sets of enhancements indicates that there exists an
apparent offset between TEC and density enhancements. The TEC enhancements detected with the GPS
receivers appear to be located a few degrees north of the density increases detected in situ by the
DMSP-F15 satellite. This discrepancy is more evident during the crossing of the second TEC enhancement
in which the density increase was seen between 2259 and 2305UT (Figure 3b), and the TEC enhancement
crossing occurs between 2301 and 2307UT along the satellite trajectory (see Figure 2c). This difference can
be explained by the intrinsic characteristics of the measurements. GPS TEC is an altitude-integrated measure-
ment that responds directly to the peak of the density profile, which is assumed to be at 350 km altitude.
DMSP observations with the SSIES instrument are carried out at 840 km altitude. We suggest that after the
F region plasma is set in motion, due to winds along the field lines, the plasma continues to move along
the field lines and reaches 840 km altitude a few degrees farther to the south. As the TEC enhancements

Figure 3. (a) The number density displayed as a red line and the ion temperature (blue dots) measured by the DMSP-F15
between 21:03 and 21:30 on 3 August 2010. (b) The same parameters measured by DMSP-F15 in the consecutive orbit
between 22:45 and 23:23:21 UT.
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occur closer to the magnetic equator, where the inclination of the field line is smaller, a larger discrepancy
is expected. It is also noted that Ti becomes less than 2000 K between 2258 and 2301UT when DMSP-F15
is crossing the second TEC enhancement, giving credence to the hypothesis that this enhancement is due
to a meridional neutral wind that moves the plasma up the field lines and into regions of smaller
recombination rates.

3. Observations During the Magnetic Storm of 5–6 August 2011
3.1. Solar Wind Parameters

A moderate magnetic storm developed on 5–6 August 2011 due to a sudden increase in the solar wind
velocity from 400 to more than 600 km/s that occurred between 1800 and 1900UT. On this day, the solar
wind density increased rapidly reaching 20 proton/cm3 before 1830UT. The main phase of the storm started
near 2000UT, as indicated in Figure 4 by the sharp decrease in the SYM-H index. The SYM-H index diminished
and reached �126 nT at 0322UT on 6 August 2011 when a slow recovery phase was initiated and continued
for several days. The SYM-H index did not return to the prestorm near-zero values until 13 August 2011. The

Figure 4. Same as Figure 1 but corresponding to 5–6 August 2011.

Journal of Geophysical Research: Space Physics 10.1002/2016JA023359

VALLADARES ET AL. THE MAGNETIC STORMS OF 2010 AND 2011 3493



IMF Bz component was negative at the time of the storm commencement but exhibited a series of sign rever-
sals that last until 2035UT when a sharp decrease made Bz equal to�20 nT. The IMF Bz component remained
negative until ~0330UT except for a sharp positive excursion between 2300 and 0020UT on 6 August 2011.
We chose to study this storm and the one on 3–4 August 2010 due to their similarity on the main phase UT
and the timing of the Bz southward reversals. It was indicated before that Bz became negative ~1930UT on 3
August 2010 and at 2035 UT on 5 August 2011.

3.2. TEC Values During the Storm of 5–6 August 2011

Equivalent vertical TEC values observed with 652 GPS receivers that operated continuously in the American
sector were used to produce TECmaps during the storm of 5–6 August 2011 (Figure 5). We selected a variable
time interval between the four frames of Figure 5 to accommodate a display of the DMSP-F15 satellite trajec-
tory that crossed the American sector between 2157 and 2230UT and the DMSP-F17 satellite trajectory
between 2245 and 2318UT. We will use these plots to ease the comparison between TEC and satellite Ne
and Ti measurements. TEC images with a cadence time of 2min were also processed to produce a movie that
is included in the supporting information (Movie S2). Careful examination of the four frames of Figure 5, and
an inspection of themovie, indicates the existence of an equatorial anomaly consisting of a single crest that is
initially located in the Northern Hemisphere and later drifts to the Southern Hemisphere. The TEC movie
starts at 1900UT when the maximum TEC associated with the anomaly resides over the magnetic equator
in the Brazilian sector. As time progresses, a single crest anomaly becomes fully formed that expands north-
ward reaching +15° magnetic latitude at 2130UT (1630 LT at 75°W). After this time the anomaly recedes,
fades a little and crosses the magnetic equator at 2205UT. In the Southern Hemisphere, the crest reintensi-
fies, expands poleward (Figure 5b), and develops a strong longitudinal variability in which the western side
(Peruvian sector) is only 10° from the magnetic equator, but the eastern side (Brazilian sector) is situated at
20° magnetic latitude (Figure 5c). We believe that the poleward expansion and the reintensifications of the
crest are likely produced by the action of the zonal electric fields related to a prompt penetration E field
and an enhanced meridional neutral wind associated with storm conditions.

Similar to the TEC observations during the storm discussed in section 2, the TEC plots for 5–6 August 2011
show two TEC enhancements: (1) over North America and (2) along Central America. These two enhance-
ments reach values higher than the TEC values of the equatorial anomaly. The SED appears initially over
the eastern coast of North America (~50° geographic latitude) but rapidly expands westward by 2020UT.
Previous to the appearance of the SED, we did not observe low-latitude plasma density moving toward
the region of the SED. In fact, the equatorial anomaly was moving farther southward away from the SED.
During the following tens of minutes, the SED intensifies, drifts southward, and widens. The largest width
is observed on the eastern side of the SED, where the enhanced plasma extends into the Caribbean region.
Figures 5b and 5c, and the movie for 5–6 August 2011, display the growth and expansion of the SED into the
Caribbean region occurring between 2200 and 2300UT. This enhancement reaches the northern boundary of
South America near 2300UT (1800 LT at 75°W).

The second TEC enhancement appears at 1920UT, tens of minutes before the start of themain phase, when a
region of high TEC appears to move from the Pacific Ocean toward Central America. This enhancement
expands over Mexico and the southern states on the west coast of USA between 2000 and 2130UT.
Similar to the enhancements observed on 3–4 August 2010, both TEC enhancements of 5–6 August 2011
merge (Figure 5c), coalesce, and then fade after 0200UT. However, the final fate of both merged TEC
enhancements includes a final splitting and a fading stage in which one enhancement decays and retreats
over Central America and the southern part of the SED drifts over Florida and covers part of the Caribbean
region. The TEC trough forms after 2300UT and becomes very pronounced at 0100UT (Figure 5d).

3.3. DMSP In Situ Observations During the Storm of 5–6 August 2011

Figure 6 shows the number density (in red) and the ion temperature (in blue) measured by the DMSP-F15
satellite between 2158UT and 2231UT and DMSP-F17 between 2243 and 2316UT. The format of this
Figure is similar to Figure 3, but during this storm a much higher variability was observed in both density
and Ti parameters. A close comparison of the satellite trajectories (Figures 5b), the TEC values, and the Ne
values of Figure 6a indicates that the small density peak seen at 2225UT coincides with the TEC SED located
between 40° and 46° geographic latitude at 97°W geographic longitude that was traversed by the DMSP-F15
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satellite between 2224 and 2226UT. The second density maxima observed by DMSP-F15 at 2212UT is located
few degrees south from the second TEC enhancement. It is worth mentioning that the density peak is asso-
ciated with a significant decrease of the ion temperature to a value close to 1700 K. It is suggested that the
ion temperature decrease is likely produced by adiabatic cooling due to the upward expansion of the F region

Figure 5. Same as Figure 2 but corresponding to 5–6 August 2011. GPS TEC maps for (a) 21:00–21:10, (b) 22:20–22:30, (c) 23:00–23:10, and (d) 01:00–01:10 UT.
Figures 5b and 5c show passes of the DMSP-F15 and F17, respectively.
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plasma carried by a southward directed wind. The spatial offset between the ground-based TEC and the
satellite-observed density is due to the altitude difference between the two types of measurement.

Figure 6b displays density variations that are accompanied by pronounced changes in the ion temperature. A
small density variability occurs during the satellite crossing of the SED. Here Ti decreases to values less than
2000 K at 2311UT. A second, but smaller, Ti decrease was observed between 2302 and 2306UT that occurred
simultaneously with a small density increase observed when the DMSP-F17 satellite was crossing the second
TEC enhancement and the southern part of the SED. This pattern of high Ne and low Ti supports our conten-
tion by which the formation of the second TEC enhancement is driven by a southward directed meridional
wind that moves plasma along field lines toward higher altitudes where recombination proceeds at a slower
rate. Both satellite passes of Figure 6 detected a prominent trough located adjacent to, but poleward of, the
SED. The topside plasma density decreased by almost an order of magnitude to values close to 104 cm�3.
However, TEC decreases in the trough region are not observed in the TEC maps until 0100UT on 6 August
2011 (Figure 5d and Movie S2). This fact suggests that plasma evacuation in the trough region starts in the
topside ionosphere and later propagates and extends through all altitudes.

4. Discussion

This paper has shown how the TEC evolved in the American sector during twomagnetic storms that occurred
during the ascending phase of the Sun’s activity in cycle 24. The SYM-H index decreased to values close to
�90 nT and�120 nT during the storms of August 2010 and 2011, respectively. These values are less negative
than the SYM-H values observed during several superstorms that developed during solar cycle 23 [Basu et al.,
2001, 2007; Vlasov et al., 2003; Tsurutani et al., 2004;Mannucci et al., 2005; Foster and Coster, 2007; Balan et al.,
2009]. Here the effects of these two storms are thoroughly investigated, and each ionospheric process is
singled out to investigate how they produce regions of enhanced densities (and TEC). It is also indicated that
these processes can be magnified during super geomagnetic storms.

Figure 6. Same as Figure 3 but corresponding to 5–6 August 2011.
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One of the processes, which has been cited as a way to redistribute plasma across latitudinal boundaries and
produce density enhancements during magnetic storms, consists of the superfountain effect [Tsurutani et al.,
2004;Mannucci et al., 2005; Balan et al., 2009, 2011]. We have demonstrated that during moderate storms the
equatorial anomaly develops but can have highly asymmetric crests due to the action of a persistent meridio-
nal wind. It was also shown that during the storms of August 2010 and 2011, the crests of the anomaly did not
move to latitudes poleward of 20°. In fact, in one case the anomaly appears to move equatorward and cross
into the opposite hemisphere. Despite the lack of density contributions from equatorial latitudes, prominent
SEDs developed during both storms implying that the source of the plasmawithin the SEDs was confined and
localized to midlatitudes. It is concluded that during these two storms no density was transported from low
latitudes either to form the SED or to create the second TEC enhancement that was observed in the TEC
maps. The confinement of the anomaly to latitudes less than 20° implies the existence of a small penetration
electric field during both storms.

Several authors have suggested that subauroral SEDs can be formed by the transport of plasma that originates
at equatorial latitudes [Tsurutani et al., 2004; Mannucci et al., 2005]. Other researchers have postulated that
plasma fromthecrestsof theanomaly canbe transportedpolewardby theactionofpromptpenetratingEfields
at midlatitudes [Kelley et al., 2004]. To fully resolve the question on the origin of the SED, it is necessary to
contemplate the motion of TEC structures as they are tracers of the plasma dynamics during moderate and
superstorms. Here it is suggested that during moderate storms the origin of the plasma within the SEDs is
in the region adjacent to the TEC enhancements and driven to higher altitudes by the wind system and
electric fields [Heelis et al., 2009; Rishbeth et al., 2010]. Our contention is supported by the decrease in ion
temperature that is simultaneously measured by the DMSP satellites when crossing the SED and the second
TEC enhancement.

The SSIES instrument on board the DMSP-F15 and F17 satellites observed several events of ion temperature
decrease when the satellites passed close to the region of enhanced TEC values. These measurements have
some similarities to early satellite observations conducted at low latitudes by Hanson et al. [1970, 1973],
Hanson and Sanatani [1970], and Heelis et al. [1978] in which the ion temperature above 500 kmwas less than
theneutral temperature. Theseauthors andalsoVenkatramanandHeelis [1999] suggested that the low-latitude
plasma had been adiabatically cooled owing to the upward expansion of plasma during interhemispheric
transport along magnetic field lines. For a flow from summer to winter, the ion temperature was lowered
on the summer side and raised on the winter side. Bailey et al. [1973] and Bailey and Heelis [1980] solved
the heat balance equation together with the momentum equation for O+, H+, and electrons to demonstrate
that ion temperature troughs depend on the neutral wind velocity and thermal conduction. Satellite mea-
surements during solar minimum conditions have indicated that Ti cooling and heating are strongly depen-
dent on the location of the O+/H+ transition height. During solar maximum conditions the transition height is
well above 800 km. During solar minimum conditions the transition height lowers in altitude, and the cooling
process is not as strong as during high solar activity [Venkatraman and Heelis, 1999]. We observed a smaller
amount of cooling in 2010 than in 2011, a year of less solar activity. It is suggested that a strong southward
directed meridional wind likely associated with the disturbance dynamo is able to move plasma up the field
lines and produce the second TEC enhancement and influence the altitudinal distribution of the SED. During
both storms the plasma moves up the magnetic field, inducing an adiabatic plasma cooling.

During geomagnetic storms, significant changes in the neutral composition are typically observed [Lei et al.,
2008; Crowley et al., 2008]. This composition variability has been evident in the O/N2 ratio measured by the
Global Ultraviolet Imager on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite.
An increase in the O/N2 ratio can certainly produce an increase in the local density and the altitude-integrated
TEC values. However, these density enhancements will not be associated with adiabatic expansions or
compressions of the plasma. Therefore, no variability in the ion temperature would be expected.

The storms of August 2010 and 2011 have also shown unique characteristics not reported before. The maps
of Figures 2 and 5 display two regions, both at midlatitudes, containing enhanced TEC values. We believe that
the appearance of a second region of enhanced TEC over Central America is mainly produced by the seasonal
variability of the density at midlatitudes, the meridional wind system, and the peculiar geometry of the
magnetic field in the American sector that contains a negative declination at longitudes west of 70°W. The
high magnetic declination of the Earth’s magnetic field in the Central American sector allows a westward
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zonal wind to move plasma up the field lines [Zhang et al., 2011, 2012; Valladares, 2013]. The westward zonal
wind and a meridional wind directed southward, likely associated with the storm disturbance dynamo, can
initiate a transport of the local plasma along and up the field lines, consequently slowing the plasma recom-
bination rate. We also observed the merging of the second region of enhanced TEC and the southern part of
the SED. Themerging of both TEC enhanced regions occurred at 23:10 UT on 3 August 2010 (Figure 2c) and at
23:00 UT on 5 August 2011 (Figure 5c). The final fate of these two TEC-enhanced regions also shows quite
similar characteristics. During the storms of August 2010 and August 2011, the merged regions separate
and decay independently after 01:00 UT.

It is also indicated that if the Bz southward turning would have occurred at a different time, especially when
the density is low, say between midnight and sunset, then probably no second TEC enhancement would
have occurred due to the absence of sufficient plasma to be transported along the field lines. Moreover, both
storms occurred during Northern Hemisphere summer solstice when the ionospheric plasma is larger in
northern latitudes.

The formation of SEDs has been associated with subauroral polarization streams (SAPS). SAPS is a broad and
poleward directed electric field which drives sunward plasma convection at subauroral latitudes in the eve-
ning local time sector [Foster and Burke, 2002]. SAPS also produce erosion of the dusk-sector plasmasphere
and the formation of sunward directed plasmasphere drainage plumes.

Prominent TEC troughs developedpoleward and a fewhours after the initiation of the SEDduring both storms.
However, the in situDMSPdata indicated thepresence of plasma troughs as early as 21:34 UTon3August 2010
and 22:28 UT on 5 August 2011. This is few hours before they were imaged using GPS TEC observations.

It is worth pointing out that the much larger number of GPS receivers that are presently operating in South
and Central America and the Caribbean region allowed us to have the necessary spatial resolution to under-
stand the dynamics of the processes creating the TEC enhancements.

5. Conclusions

Wehaveusedmaps of TECover theAmerican sector to investigate the spatial extent and temporal evolutionof
TEC enhancements during two moderate storms that developed on August 2010 and 2011. In addition to the
equatorial anomaly, there exist two regions containing enhanced TEC values at midlatitudes: the SED and
anotherregioncalledherethesecondTECenhancement.AlthoughSEDshavebeenobservedduringallseasons,
theappearanceofthesecondTECenhancementsseemsrestrictedtoNorthernHemispheresummerconditions.

We have shown that during twomoderate storms the plasma density within the SEDs does not originate from
theequatorial anomalyas theanomaly crestsdonotmovepolewardof 20°magnetic latitude. It is also indicated
that the TECalong the SED forms all at once and is not transported from farther eastward locations.More obser-
vations arenecessary to assess SED formationduringother seasons. Theappearance andevolutionof theSED is
consistent with the plasma dynamics described by Heelis et al. [2009] in which local plasma moves to higher
altitudes due to a zonal E field. However, it is indicated that a southward directed neutral wind acting across
the North American continent could also help plasma reach higher altitudes. During both storms the SEDs
are observed to move equatorward and are associated with an equatorward expansion of the auroral oval.

A second region containing enhanced TEC at midlatitudes was observed during both storms. We believe that
these enhancements are the response of F region densities to neutral winds that push plasma up the field
lines to altitudes where recombination proceeds at a slower pace. The second region of enhanced TEC
merges with the SED in both storms developing finger-type structures that appear to be associated with a
large-scale plasma instability.
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