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Key points
• This is the first time a multilayer convolutional neural

network has been used to identify ionogram traces.
• The trace extraction performance of the neural network

surpasses the performance of some machine learning
models. A comparison is presented.

• It is shown that the neural network model presented
does not need a large amount of unlabeled data, instead
a good performance is achieved using a relatively small
number of labeled data.

Abstract—An ionogram is a graph of the time that a vertically
transmitted wave takes to return to the earth as a function of
frequency. Time is typically represented as virtual height, which
is the time divided by the speed of light. The ionogram is shaped
by making a trace of this height against the frequency of the
transmitted wave. Along with the echoes of the ionosphere, iono-
grams usually contain a large amount of noise and interference of
different nature that must be removed in order to extract useful
information. In the present work we propose a method based on
convolutional neural networks to extract ionospheric echoes from
digital ionograms. Extraction using the CNN model is compared
with extraction using machine learning techniques. From the
extracted traces, ionospheric parameters can be determined and
electron density profile can be derived.

Keywords— Ionograms, automatic scaling, ionosphere profiles,
deep learning

I. INTRODUCTION

Ionosondes are a type of radar that send pulses of high frequency
radio waves to the ionosphere in the vertical direction. The echoes
of these pulses are recorded on the ground and are used to generate
a type of representative traces of the ionosphere, called ionograms,
which are a representation of the state of the ionosphere at a
given time. There is a direct relation between the frequency of the
transmitted pulses and the ionization densities of the ionospheric
layers that reflect them[1].

Figure 1 shows an example of a typical ionogram. Horizontal axis
represents the frequencies of the transmitted radio signals and the
vertical axis the virtual heights of ionospheric layers. The color of
the trace is proportional to the intensity of the received signal, more
intense echoes will have colors closer to red, while weaker echoes
to blue. In this image it can also be clearly distinguished F1 layers
over a height of 200 km and F2 over 300 km.

Echoes form characteristic patterns, which comprise an ionogram.
Critical frequencies are the limiting frequencies at which a wave
is reflected by an ionospheric layer. Waves of frequencies above
them penetrate through the layers. From ionograms it is possible to
scale, manually or by computational methods, characteristic values

Fig. 1. Ionogram of Jicamarca ionosonde showing the virtual ionospheric
height (vertical) versus frequency of transmitted pulses (horizontal). The traces
show F1 and F2 layers as well as multihop, interference and calibration signal.

of virtual heights h’E, h’F, h’F2, etc and critical frequencies foE,
foF1, foF2, etc of each layer of the ionosphere[2]. In addition the
speed of the pulses traveling in the ionosphere is lower than the
speed of the pulses traveling in free space. Therefore it is possible to
obtain information about the electron densities in the ionosphere by
building a profile from the bottom up. This process will require some
assumptions about the nature of the layers such as the existence and
depth of any areas where the electron density decreases with altitude
and which therefore cannot be probed by an ionosonde.

Interest in scaling and interpreting ionograms is increasing among
the scientific community. Extracting ionospheric parameters by man-
ual scaling is a very demanding task, both in effort and time. With
the development of image processing techniques, advances have been
made in the process of automatic scaling ionograms.

ARTIST is one of the most widely used methods for automatic
ionogram scaling in real time[3] . Chen proposed an algorithm for
automatic scaling ionograms using an image recognition technique[4]
. Pezzopane and Scotto developed methods for automatic scaling of
F1[5] , foF2 and MUF (2000)[6] and sporadic E layers [7] Harris
developed methods to separate O and X modes[8][9]. Ding developed
a method to scale F2 parameters using orthogonal function and image
processing [10].

Emphasis is usually placed on the recognition of ionogram traces,
to later obtain the density profiles by applying ionospheric inversion
techniques. In highly complex situations, such as incomplete iono-
grams or ionograms with the presence of phenomena such as spread
F, automatic scaling becomes more difficult and tends to fail.[11].

In the present work we propose the use of a convolutional neuronal
network model for the detection of ionosphere echoes in digital
ionograms, which can serve as a tool for automatic scaling. This
work represents the first step in the development of a system for
near-real time, automatic and accurate scaling of ionograms generated
by ionosondes of the LISN observatory using neural networks, so
characteristic values of ionospheric regions, such as critical frequen-
cies, can be obtained. Due to the large amount of data generated by



the network, it is not possible to consider using manual scaling in
a regular basis, but this large amount of data can be used to train
a deep learning network, which have a powerful ability to manage
large amounts of data.[12]

The work is structured as follows: Section 2 gives a brief introduc-
tion to the operation mode of ionosondes, as well as characteristics
of the ionosphere. Section 3 describes the characteristics of the data
set used, how it was obtained and what pre processing was done.
Section 4 describes the performance metric to be used. Section 5
describes and evaluates the performance of the baseline models.
Section 6 describes the use of convolutional neural networks for
profile detection.

II. THE IONOSPHERE

The ionosphere is a part of the earth’s upper atmosphere, extending
in height from 60 to about 1000 km. This region is composed
of ionized gas, called plasma. The upper limit of the ionosphere
is defined as the height at which the concentration of charged
particles of plasma, ions and electrons, exceed the concentration of
neutral atoms and molecules, at this point the ionosphere begins to
continuously transform into the magnetosphere, which it is a medium
consisting only of strongly ionized plasma and intense electric and
magnetic fields.

The ionosphere is formed when incident solar radiation removes
electrons from gases of the upper atmosphere, creating electrically
charged ions and free electrons. The ionization becomes greater
when high energy radiation interacts with a greater density of air,
and decreases when radiation loses intensity as it travels down the
atmosphere.

Usually the ionosphere is divided into five independent regions,
called layers. The lower layer, which ranges from 70 to 90 km in
height, is called layer D; from 95 to 140 km is layer E, and above
140 km layer F. The latter is usually divided into two regions, F1,
ranging from 140 to 200 km, and layer F2, which is above 200
km[13].

III. DATA SET DESCRIPTION

The data used for the training of the convolutional networks
and the evaluation of the baseline models were obtained from the
database of the distributed observatory LISN [14], which is a multi
institution, multi instrument project in which a set of geophysical
observation instruments have been deployed in different locations
in South America in order to study the electrodynamics of the
ionosphere, with emphasis on the dynamic energy transport and photo
chemical processes, and also to develop the ability of predicting
spread F occurrence and measurement of plasma densities, drifts and
neutral winds in a large geographic area [15].

Among the instruments used in the project there are 4 VIPIR
ionosondes, in the cities of Lima and Puerto Maldonado in Peru,
Tupiza in Bolivia and Tucuman in Argentina, whose ionograms will
make up the data set. The data generated by these instruments have
two objectives: education and scientific research, they are freely
available [16] and can be downloaded from the project website.

The data output of the VIPIR ionosondes is a Raw In-phase and
Quadrature (RIQ) file that contains a number of range gate samples
of the output of the Digital Down Converter for each of the 8 radar
receive channels. These define the instrument mode of operation and
the site specific information such as station location and antenna
configuration. RIQ files are binary files with a specific, custom format
[17]. RIQ FILES are converted and stored in NetCDF (ngi) format
[18]. Ngi files store the required information to decode and plot
ionograms, such as radar configuration, pulse configuration table and
IQ data blocks.

The LISN database contains more than 900,000 ionograms. De-
pending on the geographical location and the type of experiment
performed, the configuration of the ionosondes may vary, so the
number of frequency and height points is not constant throughout the

Fig. 2. The dots represent the geographic distribution of the ionosondes of
the LISN distributed observatory, nearly aligned with the magnetic flux tube
intersecting the magnetic equator at 70 deg West

database. A group of 50,780 ionograms from the Jicamarca station
was chosen to train the model, this ionograms were taken between
15:00 and 22:00 hours GMT from years 2016 to 2018. All of the
ionograms chosen have 512 height and 408 frequency points. From
this set, 816 were randomly selected to manually extract ionosphere
profiles, we call this manual extraction, these files made up the
labeled data set.

Figure 3 shows an ionogram before and after being manually
converted to a binary image, in which the ionosphere profile has
been extracted.

Fig. 3. Ionogram before and after been manually converted to a binary image

IV. PERFORMANCE METRICS

In this work we propose a method to extract ionospheric layers
from digital ionograms using image segmentation with convolutional
neural networks, where the main goal is to label every pixel of
the image as belonging to the ionosphere trace or belonging to the
background.

The most common performance metrics used for object seg-
mentation problems is an index called intersection over union
(IoU)[19][20]. IoU gives a ratio between the number of pixels
common in two images and the total number of pixels in both images.
If the images are exactly the same the result of this ratio would be
1, if there were few coincidences between the images (very different
images) the result would be close to 0.

IoU =
common area

total area
(1)

Since we are working with binary matrices the area is obtained by
making a sum of all the cells in the matrix. The intersection will be
obtained by performing a logical AND operation between the bits of



Fig. 4. (a) Original ionogram, (b) Manual extraction, (c) Automatic extraction,
(d) Comparison between manual and automatic extraction

the matrices and the union will be obtained by performing a logical
OR.

Figure 4 shows a concept of the technique that will be used to
compare manual and automatic extraction (no segmentation technique
was used to generate these traces). Manually extracted traces (b) will
be compared with automatic extracted traces (c) using IoU. In this
example, at the pixel level, the intersection matrix (d) will have only a
few elements in 1, resulting in an IoU close to zero. Manual extraction
is considered to be perfect.

V. IMPLEMENTATION AND EVALUATION OF BASELINE
MODELS

A. Profile detection using image processing and thresholding
In this approach, ionograms are considered as images, in which

noise and interference must be filtered out to isolate ionospheric
echoes. For this purpose, original ionograms are passed through three
filters:

• Median filter
• Thresholding.
• The filter defined by the matrix K.

K =


1 1 1 0 1 1 1
1 1 1 0 1 1 1
1 1 1 0 1 1 1
1 1 1 0 1 1 1
1 1 1 0 1 1 1
1 1 1 0 1 1 1

 (2)

As shown in figure 5, after passing through the three filters
it is possible to accurately eliminate the background noise from
ionograms, but neither the interference, nor the calibration signal nor
multihop can be eliminated.

Average IoU between ionograms where the three filters were
applied and manual trace extraction is 0.163.

B. Profile detection using unsupervised machine learning
models

The other method is based on the representation of the ionograms
in 3-dimensional matrices {x, y, V} where x and y represent spatial
coordinates and V the intensity of the point. With this representation
two unsupervised clustering techniques are applied, K-Means and
Mean Shift.

Fig. 5. Comparison between the original ionogram (a), the result of the
cascade application of the K filter, median filter and thresholding (b) and a
manual trace extraction (c)

Clustering is a grouping technique to find, within a set of samples,
groups that have similar characteristics, so samples that share com-
parable features will belong to the same group, and will be separated
from other groups. The goal is to maximize variations between groups
and minimize variations inside groups[21].

1) K-means clustering: K-means is a non supervised learning
clustering technique that searches patterns in the data without having
a specific prediction as a goal. K-means needs as input the number of
groups (k) in which the samples will be segmented. Knowing this the
algorithm places k random points as center of clusters, then assigns
to this points the samples with the shortest distances, then the point
shifts in the direction of the closest average distance, this process
is repeated iteratively and the groups are adjusted until the centroid
does not change further by moving the points. One of the K-means
algorithm drawbacks is that it requires the number of clusters to be
specified before the algorithm is applied. In this work we consider
that a number of clusters equal to two reflects a specific characteristic
of the data set, since we want to cluster the ionogram points into two
main classes, ionospheric echoes and background noise. Figure 6
shows a comparison between an original ionogram, trace extraction
using K-means and a manual trace extraction. As with the application
of the filters, interference, multihop and calibration signals are not
removed.

Fig. 6. Comparison between the original ionogram (a), application of K-
menas (b) and manual trace extraction (c)

Average IoU between trace extraction using K-means and manual
extraction, for the test set is 0.157.

2) Mean shift clustering: Mean shift is also a non supervised
learning clustering technique that assigns the samples to the clusters
by moving the center of these towards the direction of highest density
of samples [22]. Giving a data set, mean shift is the displacement of
a point from an initial location in the space, to another that results
from the average of the weights of the data within a neighborhood
determined by a region centered in x. Unlike K-Means algorithm,
mean shift does not require a previous knowledge of the number of
clusters, they are determined by the algorithm with respect to the
data.

Figure 7 shows a comparison between an original ionogram, trace
extraction using mean shift and manual extraction.



Fig. 7. Comparison between the original ionogram (a), application of mean
shift (b) and manual trace extraction (c)

TABLE I
BASELINE MODELS AVERAGE IOU

Filtered K-Means Mean Shift
IoU 0.163 0.157 0.105

Average IoU between trace extraction using mean shift and manual
extraction for the test set is 0.105

Table I summarizes the results of the IoU for the three baseline
models.

VI. PROFILES DETECTION USING CONVOLUTIONAL
NEURAL NETWORKS

A large amount of unlabeled data is available from the LISN
data base, on the other hand, labeled data can only be obtained by
performing manual trace extraction of ionograms, which is not only a
time consuming process but also requires a high level of knowledge
and experience. Given this scenario, with the goal of building a semi-
supervised learning model, both types of data have been used, the
large amount of unlabeled data and the small number of labeled
(manually extracted) ionograms.

We used a model based on a multilayer convolutional encoder
decoder neural network, with multiple layers of convolutions.[23]
The model architecture has some similarities with an autoencoder, in
the sense that it is also used for the task of representation learning,
and is used to reconstruct data, but is not exactly the same, given that
the input and output of the network are not intended to be the same.
The first part of the network is an encoder that maps raw inputs to
a rich representation of feature vectors, the second part is a decoder
that takes these feature representation as input, process it, produces
an output and maps the output back into the raw format. The network
goal is to learn an efficient representation of the data.

Figure 8 shows a description of the network model.

Input image size: 256 x 208
Encoder:

Convolution layers: 3
filters: 16, 8, 8
kernel sizes: 3, 3, 3
activation: ReLU
Padding: same

max pooling layers: 3
kernel sizes: 2, 2, 2
Padding: same

Decoder:
Convolution layers: 3

filters: 8, 8, 16
kernel sizes: 3, 3, 3
activation: ReLU
padding: same

Up sampling layers: 3

Fig. 8. Neural network model

kernel sizes: 2, 2, 2
padding: same

Optimizer: Adadelta
Loss function: binary cross entropy

Fig. 9. Layers of the neural network model

Figure 9 shows details of the different layers of the neural network
model.

The training set used has 31,699 ionograms, the validation set
9,577 and the test set 9,505. 816 ionograms were manually scaled,
from them 474 are used as training set, 151 as validation set and 191
as test set. The process was divided in 3 stages, in the first stage the
31,699 original ionograms were used to train a model, in the second
stage the 474 manually extracted traces were used to fine tune the
pretrained model from the first stage, and in the last stage a new
model is trained using only manually extracted traces. The results of
these two models are compared.

A. Pre training: Building a neural network model from base
line models

In the first stage of the learning process we feed the neural network
with original ionograms (X) from the training/validation sets, and
use as output variables (y) ionograms with traces extracted using the
three baseline techniques (filters, k-means and mean shift). We end
up with three neural network models, each one learned to reconstruct



Fig. 10. Input data of all models are original ionograms. (a) CNN model 1:
output variables are ionograms with traces extracted using filters. (b) CNN
model 2: output variables are ionograms with traces extracted using K-means.
(c) CNN model 3: output variables are ionograms with traces extracted using
mean shift.

TABLE II
CONVOLUTIONAL NETWORK AVERAGE IOU

Filtered K-Means Mean Shift
IoU 0.174 0.173 0.077

ionograms the same way baseline models do it, as shown in figure
10.

The application of each of these models in the test set compared
to manual trace extraction is shown in figure 11

Average IoU between ionograms with traces extracted with these
CNN models and manual extraction is summarized in table II. A
small improvement is observed compared to IoU of baseline models.

B. Fine tuning: using manual extraction to improve perfor-
mance of CNN models

In the second stage of the learning process, we fine tune the
previously trained models. The three models are fed again with
original ionograms from the training/validation sets, but the output
variables this time are ionograms with manually extracted traces from
the training/validation sets, as shown in figure 12.

Figure 13 shows results of the different stages of the training
process. Columns from left to right: Original ionogram, ionogram
with traces extracted using a CNN trained with baseline models,
manual trace extraction, ionogram with traces extracted using the
CNN models plus fine tuning. In the latter it is observed that
interference, background noise, calibration signal from the radar and
Es layer have been completely removed.

TABLE III
FINE TUNED CONVOLUTIONAL NETWORK AVERAGE IOU

Filtered K-Means Mean Shift
IoU 0.589 0.602 0.593

Fig. 11. Baseline model learning. Left column is the reconstruction of an
ionogram using a neural network model trained with a base line model, and
the right column is the manual trace extraction. (a)Kmeans, (b)Mean shift
(c)filters

Average IoU between test set ionograms with traces extracted
using fine tuned models and manual extraction is summarized in table
III. A significant improvement is observed compared with the IoU of
trace extraction before applying fine tuning.

C. Building a neural network model from labeled ionograms
only

As a final stage, another CNN model was created using only
manually extracted traces as training data, no pre training was used.
This model gives an average IoU of 0.569, which is unexpectedly
high given the small amount of data used for training.

Average IoU of all models are summarized in figure 14.
Figure 15 shows examples of accurate predictions of unseen data

(ionograms that do not belong to any of the sets used in the learning
phase of the model development), showing good generalization
performance.

Figure 16 shows inaccurate predictions on unseen data. This
happens with ionograms that have weak traces, also with ionograms
whose shapes have not been seen frequently during the training
process. More manually scaled ionograms on a more diverse set
of shapes should be created to reduce the number of inaccurate
predictions.



Fig. 12. Fine tuning of pre trained models. Input data of all models are original
ionograms and output variables are ionograms with manually extracted traces.

Fig. 13. Fine tuning and final prediction. (a)Kmeans, (b)Mean shift (c)filters

VII. CONCLUSIONS

1) In terms of IoU, trace extraction when using a neural network
trained using labeled data is 5.6 times better than trace extrac-
tion performed by baseline models.

2) The use of large amounts of unlabeled data to generate a pre-
trained model slightly improves (<6%) the accuracy of the
final model, so we can say that performance of the model is
based mainly on the use of labeled data for training and not
on a pre-training process with unlabeled data.

3) In order to improve model generalization, it is necessary to
train it with a greater amount of labeled data, from a more
diverse set of ionograms, from different periods of time and
geographic locations, covering a greater number of possible
states of the ionosphere.

Fig. 14. Average IoU of all models

Fig. 15. Accurate predictions of unseen data
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Fig. 16. Inaccurate predictions of unseen data
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