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Outline

°* Space Weather definition. SW events. The Sun and the
Solar Wind.

* Inputs from above (Sun, solar wind and magnetosphere).
Magnetic storms. Storms during previous solar cycle.
During present solar cycle.

* Sources from Below: Ionospheric plasma structures also
named plasma bubbles. Tides and other type of waves. ESF,
scintillations.

* About distributed observatory. Concept.

° Summary.



Space Weather Definition

The NSWP defines Space weather as: “the
conditions on the Sun and in the solar wind,
magnetosphere, ionosphere and thermosphere that
can influence the performance and reliability of
space-borne and ground-based technological
systems and can endanger human life or health.”

Solar
Magnetic
Fields and
Variability




The Sun’s place in the Galaxy

The Sun is one of about 200 billion stars in a
galaxy we call Milky Way. It resides on the
outskirts, about 28,000 light years from the center.



On the Solar Wind
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The solar wind streams off of the Sun in all directions
at speeds of about 400 km/s (about 1 million miles per
hour). The source of the solar wind is the Sun's hot
corona. The temperature of the corona is so high that
the Sun's gravity cannot hold on to it.



Solar radiation and high energy particles
Event on 2000/05/15 and 2003/10/27 observed by satellite SOHO
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Physical Processes Associated with Space Weather

Coronal Mass Ejections and their associated shock waves
are drivers of space weather as they can compress the
magnetosphere and trigger geomagnetic stormes.

CMEs are
enhancements
of the
continuous but
variable outflow

1999/08/p100:18 +

The effects are more pronounced where the Earth’s
magnetic field is connected to the interstellar medium
(e.g. polar regions). The closed field lines of mid- and
low-latitudes protect the ionospheres from many effects.



Coronal Mass Ejections
e sun loses 10 kg per day in total solar wind

e each CME ejects about 10'3 kg at about 350 km
S—1

e on average 1 CME occurs every 4 days at
sunspot minimum, but 2 CMEs per day at sunspot
maximum

e 1 CME hits Earth every 2 weeks at sunspot
minimum, 4 per week at sunspot maximum

» total energy in each CME about 1024 J

e atone every 2 days this is 50,000 power stations’
worth hitting Earth.



The Earth, the magnetosphere and solar wind
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The Bastille Day Storm, Electron

16 JUL 2000, 00:01
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Solar wind-Earth interaction

Generates Electrical Currents and cause a power
outage, energizes particles (radiation), moves plasma
and affect our communication and navigation
systems

heat the upper atmosphere, causing it to expand,
increasing drag on LEO satellites

The 2008 US National Research Council report estimated the cost if
a September 1859 sized CME hit us; first it could take us 10 years to
recover, and cost could be between $1 trillion and $2 trillion (in the
first year alone) to repair the damage.



Other large economic events
- San Francisco Earthquake ..... 1906
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Few notes about the solar cycle of the Sun

The solar cycle (or solar magnetic activity cycle) has a
period of about 11 years. The cycle is observed by
counting the frequency and placement of sunspots visible
on the Sun. Solar variation causes changes in space
weather and to some degree weather and climate on Earth.

400 Years of Sunspot Observations
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Space Weather:

Sources from BELOW
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Why Do Disturbances Form?
Unique Equatorial Magnetic Field

Equatorial scintil|at|on occhs because plasma

disturbances form with horizontal magnetic field

Plas:ma moves Magnetic (Dip) Equator
easily along field |

lines, which act
as conductors

Horizontal field
lines support
plasma against
gravity-
unstable
configuration
E-region “shorts
out”
electrodynamic
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Development of plasma structures

77

®* The dense density
near the F-region
peak is supported
against gravity by a
horizontal magnetic
field resulting in a

“heavy fluid” on a
“light fluid”. o o
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Woodman and LaHoz,
1976
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Influences from below

* The dense density near the F-region peak is
supported against gravity by a horizontal
magnetic field resulting in a “heavy fluid” on

« A small perturbation in @i igeg T
the Interface generates ¥
an electric field

— OExB pushes the
iInterface further up

________________

Kelley, 1989

* Radio waves passing through the irreqularities
diffract producing signal fading and strong
scintillations even at L freque

* Must know what is going
on along the entire field
line to understand all the
physics.




Plasma Bubbles observations using different techniques
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Global Positional System (GPS)

The GPS system is made up of a
satellite constellation of 24 working
satellites and three spares. Each
one circles the Earth twice each
day at an altitude of 20,200 km.
The orbits are designed so at least
four satellites are always within
line of sight from almost any place
on earth.

A constellation of GPS satellites broadcasts
precise timing signals by radio to GPS
receivers which allow them to accurately
determine their location (longitude,
latitude, and altitude) in real time.




Impacts due to Ionospheric Scintillations

Principal impacts of ionospheric Drifting plasma
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What happens to a radio-wave when it

crosses a plasma bubble
Td - R / C + EN—? FROM SATELLITE
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* Phase variations on wavefront cause diffraction pattern on ground

* A phase changes of ~ Ttradians (i.e., 0.6 TEC units) required for total
destructive interference

* But the variations must occur over limited spatial scale (Fresnel zone)



Implications for the Ionosphere

So that means at L1 we need ~0.6 TEC unit
variations over spatial scales of a few 100 meters to
achieve strong scintillation; lesser variations will
cause corre dingly weaker intensity fluctuations

10N

=LUVU
— Small relative density fluctuations required
Solar min TEC ~ 1-5 (nighttime)

— Large relative density fluctuations required

Consistent with expectations, GPS scintillations
are generally weak during solar minimum

Scintillation impacts on GPS are limited to solar
max periods (3-4 years around peak)



Disturbed lonospheric Regions and
Systems Affected by Scintillation
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Horizontal Position Error
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Modelling Effects on Positioning Accuracy

16 Mar 2002, ASI
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Space weather and our communication and navigation
systems

The main factor that affect
the navigation and
communication system is the
variability of structure and
dynamics of plasma in our
atmosphere.



Space Weather Events
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More Space Weather Events
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from SpaceWeather.com about a storm reaching Earth on the 10-11
of November.

apaceweather.cnm

Hr-w: nnd H‘.IFDHTT:T'J{'IJ'.I abioutithe SunEarthien

AURORA ALERTS | SUBMIT YOUR PHOTOS! | 3D SUN | CONTACT US | SUBSCRIBE |  FLYBYS

Lurreni H What's up in space Saturday, Nov. 9, 2013

Conditions
) When is the best time to see auroras? Where is the best place
Solar wind to go? And how do you photograph them? These questions and
speed: 407.0 kmsec more are answered in a new book, Northern Lights - a Guide,
Sl S by Pal Brekke & Fredrik Broms.

explanstion | more dats
Updated: Teday at 0405 UT

NORTHERN

LIGHTS
A GUIDE

X-ray Solar Flares AN ASTEROID WITH SIX TAILS: The Hubble Space Telescope has spotited a
Bohr max: C1 187 UT NovO8 strange asteroid with six comet-like tails. (Extra: Amateurs have spotted #, too.)
34 hr 1{1. 0476 UT Novls Researchers think the asteroid, named Pf2013 PS, is spewing jets of dust as it

sxplanation | more dats rapidly rotates to the breaking point. Get the full story from Science@NASA.




More from spaceweather.com

ANOTHER X-FLARE: Big sunzpot AR1350 iz crackling with strong flares. The latest,
which peaked on Mov. 8th at 04:32 UT, registered X1 on the Richter Scale of Flares.
(Mote: Earlier, we underestimated the intensity of this flare as KM8.) NASA = Solar

Dynamics Observatory recorded a flash of extreme UV radiation from the blast site:

Space Weather News for Nov. 8, 2013
http://spaceweather.com

HIGH SOLAR ACTIVITY: This
week, Jupiter-sized sunspot AR1890
unleashed two brief but intense X-
class solar flares and numerous M-
class solar flares. More eruptions are
in the offing as the sunspot turns to
directly face Earth over the weekend.
X-flare alerts are available from

http://spaceweathertext.com (text) and

http://spaceweatherphone.com
(voice).

This sun=pot has a =ignature: it tends to produce very brief flares. The X1-flare
was no exception as it lasted barehy a minute. Brevity mitigates Earth-effects, so
thiz intense flare was not strongly geoeffective—at least, not at first. The explosion
alzo hurled a CME into space: movie. The cloud could deliver a glancing blow to
Earth’s magnetic field on Nov. 10-11, pos=sibly sparking polar geomagnetic storms.


https://email.bc.edu/owa/redir.aspx?C=UO0A36L210GSzL3xZMdqljVd_5J7sNAIFD-wF9Uxv0eqm5hGEW7pjut5271CMxhb1JTIXnft8KY.&URL=http://spaceweather.com
https://email.bc.edu/owa/redir.aspx?C=UO0A36L210GSzL3xZMdqljVd_5J7sNAIFD-wF9Uxv0eqm5hGEW7pjut5271CMxhb1JTIXnft8KY.&URL=http://spaceweathertext.com
https://email.bc.edu/owa/redir.aspx?C=UO0A36L210GSzL3xZMdqljVd_5J7sNAIFD-wF9Uxv0eqm5hGEW7pjut5271CMxhb1JTIXnft8KY.&URL=http://spaceweatherphone.com

Two channels of high TEC formed over the Americas on August 3,
2010, during a magnetic storm.
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TEC values observed on August 5-6, 2011. Two regions of enhanced
TEC were seen, similar to previous plot.
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September 26, 2011 19:30 UT (a) Overlay of SuperDARN
convection map on GPS/TEC plot showing an SED
generating a TOI. (b) Plots of the line-of-sight velocity
measured by the SuperDARN radars that observed across the
SED feature. The locations of the radars and their fields of

view are indicated.
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Percent coverage of precision approach service (red line) of the
WAAS Localizer Performance with Vertical Guidance (LPV) for
1 July 2003 to 1 March 2005. The "worst case" situation for each

day is shown.
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Tropospheric Weather Displays

19:30 19-HOY-2004 GHT ©CCopyright HSI Corporation htbp://uuu,usi,con
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Locations of LISN GPS Receivers (47)




Conclusions

* Space weather is a potential threat to several
technological systems. It disrupts communication
and navigation systems at all latitudes.

* Distributed observatories are the best tool to study
space weather issues.

* LISN is a distributed observatory to study some
aspect of space weather (plasma bubbles, ESF). It
provides regional coverage of the day-to-day
variability of the ionosphere over South America.
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